Add a proof that AboveBelow is a fixed-height lattice (phew!)
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
c0db2ccd46
commit
fa7e2b5bb6
@ -8,7 +8,10 @@ module Lattice.AboveBelow {a} (A : Set a)
|
||||
(≈₁-dec : IsDecidable _≈₁_) where
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.Product using (_,_)
|
||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst; refl)
|
||||
import Chain
|
||||
|
||||
open IsEquivalence ≈₁-equiv using () renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||
|
||||
@ -275,3 +278,57 @@ module Plain where
|
||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_; _≺_)
|
||||
|
||||
⊥≺[x] : ∀ (x : A) → ⊥ ≺ [ x ]
|
||||
⊥≺[x] x = (([ x ] , ≈-refl) , λ ())
|
||||
|
||||
x≺[y]⇒y≡⊥ : ∀ (x : AboveBelow) (y : A) → x ≺ [ y ] → x ≡ ⊥
|
||||
x≺[y]⇒y≡⊥ x y ((d , x⊔d≈[y]) , x̷≈[y]) with d
|
||||
... | ⊥ rewrite x⊔⊥≡x x with ≈-lift a≈y ← x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift a≈y))
|
||||
... | ⊤ rewrite x⊔⊤≡⊤ x with () <- x⊔d≈[y]
|
||||
... | [ a ] with x
|
||||
... | ⊥ = refl
|
||||
... | ⊤ with () <- x⊔d≈[y]
|
||||
... | [ b ] with ≈₁-dec b a
|
||||
... | yes _ with ≈-lift b≈y ← x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift b≈y))
|
||||
... | no _ with () <- x⊔d≈[y]
|
||||
|
||||
[x]≺⊤ : ∀ (x : A) → [ x ] ≺ ⊤
|
||||
[x]≺⊤ x rewrite x⊔⊤≡⊤ [ x ] = ((⊤ , ≈-⊤-⊤) , λ ())
|
||||
|
||||
[x]≺y⇒y≡⊤ : ∀ (x : A) (y : AboveBelow) → [ x ] ≺ y → y ≡ ⊤
|
||||
[x]≺y⇒y≡⊤ x y ((d , [x]⊔d≈y) , [x]̷≈y) with d
|
||||
... | ⊥ rewrite x⊔⊥≡x [ x ] with ≈-lift x≈a ← [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
|
||||
... | ⊤ rewrite x⊔⊤≡⊤ [ x ] with ≈-⊤-⊤ ← [x]⊔d≈y = refl
|
||||
... | [ a ] with ≈₁-dec x a
|
||||
... | yes _ with ≈-lift x≈a ← [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
|
||||
... | no _ with ≈-⊤-⊤ ← [x]⊔d≈y = refl
|
||||
|
||||
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
|
||||
|
||||
module _ (x : A) where
|
||||
longestChain : Chain ⊥ ⊤ 2
|
||||
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤))
|
||||
|
||||
¬-Chain-⊤ : ∀ {ab : AboveBelow} {n : ℕ} → ¬ Chain ⊤ ab (suc n)
|
||||
¬-Chain-⊤ (step ((d , ⊤⊔d≈x) , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ d = ⊥-elim (⊤̷≈x ⊤⊔d≈x)
|
||||
|
||||
isLongest : ∀ {ab₁ ab₂ : AboveBelow} {n : ℕ} → Chain ab₁ ab₂ n → n ≤ 2
|
||||
isLongest (done _) = z≤n
|
||||
isLongest (step _ _ (done _)) = s≤s z≤n
|
||||
isLongest (step _ _ (step _ _ (done _))) = s≤s (s≤s z≤n)
|
||||
isLongest {⊤} c@(step _ _ _) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {[ x ]} (step {_} {y} [x]≺y y≈y' c@(step _ _ _))
|
||||
rewrite [x]≺y⇒y≡⊤ x y [x]≺y with ≈-⊤-⊤ ← y≈y' = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {⊥} (_ , ⊥̷≈⊥) _ _) = ⊥-elim (⊥̷≈⊥ ≈-⊥-⊥)
|
||||
isLongest {⊥} (step {_} {⊤} _ ≈-⊤-⊤ c@(step _ _ _)) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _)))
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = (((⊥ , ⊤) , longestChain) , isLongest)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user