Compare commits
No commits in common. "2f91ca113eb8082beaa00c2cde50b9932555567f" and "de956cdc6a0815b31b27e282f9914a3b168f6254" have entirely different histories.
2f91ca113e
...
de956cdc6a
|
@ -52,7 +52,7 @@ record Program : Set where
|
|||
rootStmt : Stmt
|
||||
|
||||
private
|
||||
buildResult = buildCfg rootStmt empty
|
||||
buildResult = Construction.buildCfg rootStmt empty
|
||||
|
||||
graph : Graph
|
||||
graph = proj₁ buildResult
|
||||
|
|
|
@ -110,7 +110,8 @@ cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
|
|||
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
|
||||
}
|
||||
|
||||
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
|
||||
record Relaxable (T : Graph → Set) : Set where
|
||||
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
||||
|
||||
instance
|
||||
IndexRelaxable : Relaxable Graph.Index
|
||||
|
@ -126,7 +127,17 @@ instance
|
|||
)
|
||||
}
|
||||
|
||||
open Relaxable {{...}}
|
||||
ProdRelaxable : ∀ {P : Graph → Set} {Q : Graph → Set} →
|
||||
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
|
||||
Relaxable (P ⊗ Q)
|
||||
ProdRelaxable {{pr}} {{qr}} = record
|
||||
{ relax = (λ { g₁⊆g₂ (p , q) →
|
||||
( Relaxable.relax pr g₁⊆g₂ p
|
||||
, Relaxable.relax qr g₁⊆g₂ q) }
|
||||
)
|
||||
}
|
||||
|
||||
open Relaxable {{...}} public
|
||||
|
||||
relax-preserves-[]≡ : ∀ (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ ⊆ g₂) (idx : Graph.Index g₁) →
|
||||
g₁ [ idx ] ≡ g₂ [ relax g₁⊆g₂ idx ]
|
||||
|
@ -134,60 +145,136 @@ relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNode
|
|||
rewrite cast-is-id refl (Graph.nodes g₂)
|
||||
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
|
||||
|
||||
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||||
pushBasicBlock bss g =
|
||||
( record
|
||||
{ size = Graph.size g Nat.+ 1
|
||||
; nodes = Graph.nodes g ++ (bss ∷ [])
|
||||
; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
||||
}
|
||||
, ( Graph.size g ↑ʳ zero
|
||||
, record
|
||||
{ n = 1
|
||||
; sg₂≡sg₁+n = refl
|
||||
; newNodes = (bss ∷ [])
|
||||
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
|
||||
; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
|
||||
}
|
||||
)
|
||||
)
|
||||
-- Tools for graph construction. The most important is a 'monotonic function':
|
||||
-- one that takes a graph, and produces another graph, such that the
|
||||
-- new graph includes all the information from the old one.
|
||||
|
||||
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||||
addEdges (MkGraph s ns es) es' =
|
||||
( record
|
||||
{ size = s
|
||||
; nodes = ns
|
||||
; edges = es' List.++ es
|
||||
}
|
||||
, record
|
||||
{ n = 0
|
||||
; sg₂≡sg₁+n = +-comm 0 s
|
||||
; newNodes = []
|
||||
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
|
||||
; e∈g₁⇒e∈g₂ = λ {e} e∈es →
|
||||
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
|
||||
(subst (λ e' → e' ListMem.∈ _)
|
||||
(↑ˡ-Edge-identityʳ e (+-comm s 0))
|
||||
(ListMemProp.∈-++⁺ʳ es' e∈es))
|
||||
}
|
||||
)
|
||||
MonotonicGraphFunction : (Graph → Set) → Set
|
||||
MonotonicGraphFunction T = (g₁ : Graph) → Σ Graph (λ g₂ → T g₂ × g₁ ⊆ g₂)
|
||||
|
||||
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||||
pushEmptyBlock = pushBasicBlock []
|
||||
-- Now, define some operations on monotonic functions; these are useful
|
||||
-- to save the work of threading intermediate graphs in and out of operations.
|
||||
|
||||
buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
|
||||
buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
|
||||
buildCfg (s₁ then s₂) =
|
||||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
|
||||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
|
||||
buildCfg (if _ then s₁ else s₂) =
|
||||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
|
||||
addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
|
||||
buildCfg (while _ repeat s) =
|
||||
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
update (λ { g ((idx₁ , idx₂) , idx , idx') →
|
||||
addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
|
||||
infixr 2 _⟨⊗⟩_
|
||||
_⟨⊗⟩_ : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }} →
|
||||
MonotonicGraphFunction T₁ → MonotonicGraphFunction T₂ →
|
||||
MonotonicGraphFunction (T₁ ⊗ T₂)
|
||||
_⟨⊗⟩_ {{r}} f₁ f₂ g
|
||||
with (g' , (t₁ , g⊆g')) ← f₁ g
|
||||
with (g'' , (t₂ , g'⊆g'')) ← f₂ g' =
|
||||
(g'' , ((Relaxable.relax r g'⊆g'' t₁ , t₂) , ⊆-trans g⊆g' g'⊆g''))
|
||||
|
||||
infixl 2 _update_
|
||||
_update_ : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
|
||||
MonotonicGraphFunction T → (∀ (g : Graph) → T g → Σ Graph (λ g' → g ⊆ g')) →
|
||||
MonotonicGraphFunction T
|
||||
_update_ {{r}} f mod g
|
||||
with (g' , (t , g⊆g')) ← f g
|
||||
with (g'' , g'⊆g'') ← mod g' t =
|
||||
(g'' , ((Relaxable.relax r g'⊆g'' t , ⊆-trans g⊆g' g'⊆g'')))
|
||||
|
||||
infixl 2 _map_
|
||||
_map_ : ∀ {T₁ T₂ : Graph → Set} →
|
||||
MonotonicGraphFunction T₁ → (∀ (g : Graph) → T₁ g → T₂ g) →
|
||||
MonotonicGraphFunction T₂
|
||||
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
|
||||
|
||||
|
||||
-- To reason about monotonic functions and what we do, we need a way
|
||||
-- to describe values they produce. A 'graph-value predicate' is
|
||||
-- just a predicate for some (dependent) value.
|
||||
|
||||
GraphValuePredicate : (Graph → Set) → Set₁
|
||||
GraphValuePredicate T = ∀ (g : Graph) → T g → Set
|
||||
|
||||
Both : {T₁ T₂ : Graph → Set} → GraphValuePredicate T₁ → GraphValuePredicate T₂ →
|
||||
GraphValuePredicate (T₁ ⊗ T₂)
|
||||
Both P Q = (λ { g (t₁ , t₂) → (P g t₁ × Q g t₂) })
|
||||
|
||||
-- Since monotnic functions keep adding on to a function, proofs of
|
||||
-- graph-value predicates go stale fast (they describe old values of
|
||||
-- the graph). To keep propagating them through, we need them to still
|
||||
-- on 'bigger graphs'. We call such predicates monotonic as well, since
|
||||
-- they respect the ordering of graphs.
|
||||
|
||||
MonotonicPredicate : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
|
||||
GraphValuePredicate T → Set
|
||||
MonotonicPredicate {T} P = ∀ (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ ⊆ g₂) →
|
||||
P g₁ t₁ → P g₂ (relax g₁⊆g₂ t₁)
|
||||
|
||||
|
||||
-- A 'map' has a certain property if its ouputs satisfy that property
|
||||
-- for all inputs.
|
||||
|
||||
always : ∀ {T : Graph → Set} → GraphValuePredicate T → MonotonicGraphFunction T → Set
|
||||
always P m = ∀ g₁ → let (g₂ , t , _) = m g₁ in P g₂ t
|
||||
|
||||
⟨⊗⟩-reason : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }}
|
||||
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
|
||||
{P-Mono : MonotonicPredicate P}
|
||||
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂} →
|
||||
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ g
|
||||
with p ← aP g
|
||||
with (g' , (t₁ , g⊆g')) ← m₁ g
|
||||
with q ← aQ g'
|
||||
with (g'' , (t₂ , g'⊆g'')) ← m₂ g' = (P-Mono _ _ _ g'⊆g'' p , q)
|
||||
|
||||
module Construction where
|
||||
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||||
pushBasicBlock bss g =
|
||||
( record
|
||||
{ size = Graph.size g Nat.+ 1
|
||||
; nodes = Graph.nodes g ++ (bss ∷ [])
|
||||
; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
||||
}
|
||||
, ( Graph.size g ↑ʳ zero
|
||||
, record
|
||||
{ n = 1
|
||||
; sg₂≡sg₁+n = refl
|
||||
; newNodes = (bss ∷ [])
|
||||
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
|
||||
; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||||
addEdges (MkGraph s ns es) es' =
|
||||
( record
|
||||
{ size = s
|
||||
; nodes = ns
|
||||
; edges = es' List.++ es
|
||||
}
|
||||
, record
|
||||
{ n = 0
|
||||
; sg₂≡sg₁+n = +-comm 0 s
|
||||
; newNodes = []
|
||||
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
|
||||
; e∈g₁⇒e∈g₂ = λ {e} e∈es →
|
||||
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
|
||||
(subst (λ e' → e' ListMem.∈ _)
|
||||
(↑ˡ-Edge-identityʳ e (+-comm s 0))
|
||||
(ListMemProp.∈-++⁺ʳ es' e∈es))
|
||||
}
|
||||
)
|
||||
|
||||
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||||
pushEmptyBlock = pushBasicBlock []
|
||||
|
||||
buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
|
||||
buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
|
||||
buildCfg (s₁ then s₂) =
|
||||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
|
||||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
|
||||
buildCfg (if _ then s₁ else s₂) =
|
||||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
|
||||
addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
|
||||
buildCfg (while _ repeat s) =
|
||||
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
update (λ { g ((idx₁ , idx₂) , idx , idx') →
|
||||
addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
|
||||
map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
|
||||
|
|
|
@ -1,116 +0,0 @@
|
|||
open import Agda.Primitive using (lsuc)
|
||||
|
||||
module MonotonicState {s} {S : Set s}
|
||||
(_≼_ : S → S → Set s)
|
||||
(≼-trans : ∀ {s₁ s₂ s₃ : S} → s₁ ≼ s₂ → s₂ ≼ s₃ → s₁ ≼ s₃) where
|
||||
|
||||
open import Data.Product using (Σ; _×_; _,_)
|
||||
|
||||
open import Utils using (_⊗_; _,_)
|
||||
|
||||
-- Sometimes, we need a state monad whose values depend on the state. However,
|
||||
-- one trouble with such monads is that as the state evolves, old values
|
||||
-- in scope are over the 'old' state, and don't get updated accordingly.
|
||||
-- Apparently, a related version of this problem is called 'demonic bind'.
|
||||
--
|
||||
-- One solution to the problem is to also witness some kind of relationtion
|
||||
-- between the input and output states. Using this relationship makes it possible
|
||||
-- to 'bring old values up to speed'.
|
||||
--
|
||||
-- Motivated primarily by constructing a Control Flow Graph, the 'relationship'
|
||||
-- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just
|
||||
-- a (dependent) state "monad" that also witnesses that the state keeps growing.
|
||||
|
||||
MonotonicState : (S → Set s) → Set s
|
||||
MonotonicState T = (s₁ : S) → Σ S (λ s₂ → T s₂ × s₁ ≼ s₂)
|
||||
|
||||
-- It's not a given that the (arbitrary) _≼_ relationship can be used for
|
||||
-- updating old values. The Relaxable typeclass represents type constructor
|
||||
-- that support the operation.
|
||||
|
||||
record Relaxable (T : S → Set s) : Set (lsuc s) where
|
||||
field relax : ∀ {s₁ s₂ : S} → s₁ ≼ s₂ → T s₁ → T s₂
|
||||
|
||||
instance
|
||||
ProdRelaxable : ∀ {P : S → Set s} {Q : S → Set s} →
|
||||
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
|
||||
Relaxable (P ⊗ Q)
|
||||
ProdRelaxable {{pr}} {{qr}} = record
|
||||
{ relax = (λ { g₁≼g₂ (p , q) →
|
||||
( Relaxable.relax pr g₁≼g₂ p
|
||||
, Relaxable.relax qr g₁≼g₂ q) }
|
||||
)
|
||||
}
|
||||
|
||||
-- In general, the "MonotonicState monad" is not even a monad; it's not
|
||||
-- even applicative. The trouble is that functions in general cannot be
|
||||
-- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus
|
||||
-- need to un-relax the value (which also isn't possible in general).
|
||||
--
|
||||
-- However, we _can_ combine pairs from two functions into a tuple, which
|
||||
-- would equivalent to the applicative operation if functions were relaxable.
|
||||
--
|
||||
-- TODO: Now that I think about it, the swapped version of the applicative
|
||||
-- operation is possible, since it doesn't require lifting functions.
|
||||
|
||||
infixr 4 _⟨⊗⟩_
|
||||
_⟨⊗⟩_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }} →
|
||||
MonotonicState T₁ → MonotonicState T₂ → MonotonicState (T₁ ⊗ T₂)
|
||||
_⟨⊗⟩_ {{r}} f₁ f₂ s
|
||||
with (s' , (t₁ , s≼s')) ← f₁ s
|
||||
with (s'' , (t₂ , s'≼s'')) ← f₂ s' =
|
||||
(s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s''))
|
||||
|
||||
infixl 4 _update_
|
||||
_update_ : ∀ {T : S → Set s} {{ _ : Relaxable T }} →
|
||||
MonotonicState T → (∀ (s : S) → T s → Σ S (λ s' → s ≼ s')) →
|
||||
MonotonicState T
|
||||
_update_ {{r}} f mod s
|
||||
with (s' , (t , s≼s')) ← f s
|
||||
with (s'' , s'≼s'') ← mod s' t =
|
||||
(s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s'')))
|
||||
|
||||
infixl 4 _map_
|
||||
_map_ : ∀ {T₁ T₂ : S → Set s} →
|
||||
MonotonicState T₁ → (∀ (s : S) → T₁ s → T₂ s) → MonotonicState T₂
|
||||
_map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
|
||||
|
||||
|
||||
-- To reason about MonotonicState instances, we need predicates over their
|
||||
-- values. But such values are dependent, so our predicates need to accept
|
||||
-- the state as argument, too.
|
||||
|
||||
DependentPredicate : (S → Set s) → Set (lsuc s)
|
||||
DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s
|
||||
|
||||
Both : {T₁ T₂ : S → Set s} → DependentPredicate T₁ → DependentPredicate T₂ →
|
||||
DependentPredicate (T₁ ⊗ T₂)
|
||||
Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
|
||||
|
||||
-- Since monotnic functions keep adding on to the state, proofs of
|
||||
-- predicates over their outputs go stale fast (they describe old values of
|
||||
-- the state). To keep them relevant, we need them to still hold on 'bigger
|
||||
-- states'. We call such predicates monotonic as well, since they respect the
|
||||
-- ordering relation.
|
||||
|
||||
record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
|
||||
field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
|
||||
P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
|
||||
|
||||
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
|
||||
-- property for all inputs.
|
||||
|
||||
always : ∀ {T : S → Set s} → DependentPredicate T → MonotonicState T → Set s
|
||||
always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
|
||||
|
||||
⟨⊗⟩-reason : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{{P-Mono : MonotonicPredicate P}}
|
||||
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
|
||||
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
|
||||
with p ← aP s
|
||||
with (s' , (t₁ , s≼s')) ← m₁ s
|
||||
with q ← aQ s'
|
||||
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
|
||||
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
|
Loading…
Reference in New Issue
Block a user