Compare commits
12 Commits
3859826293
...
4ac9dffa9b
Author | SHA1 | Date | |
---|---|---|---|
4ac9dffa9b | |||
3f5551d70c | |||
5837fdf19b | |||
4350919871 | |||
7fe46b014c | |||
66d229c493 | |||
1b8bea8957 | |||
dd8cdcd10c | |||
ad4592d4d2 | |||
8d0d87d2d9 | |||
cfa3375de5 | |||
6b116ed960 |
|
@ -7,17 +7,19 @@ module Analysis.Forward
|
|||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Nat using (suc)
|
||||
open import Data.Product using (_×_; proj₁; _,_)
|
||||
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
|
||||
open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.Any as Any using ()
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Function using (_∘_)
|
||||
open import Function using (_∘_; flip)
|
||||
|
||||
open import Utils using (Pairwise)
|
||||
open import Utils using (Pairwise; _⇒_)
|
||||
import Lattice.FiniteValueMap
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||||
|
@ -26,6 +28,7 @@ open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
|||
( isLattice to isLatticeˡ
|
||||
; fixedHeight to fixedHeightˡ
|
||||
; _≼_ to _≼ˡ_
|
||||
; ≈-sym to ≈ˡ-sym
|
||||
)
|
||||
|
||||
module WithProg (prog : Program) where
|
||||
|
@ -93,6 +96,17 @@ module WithProg (prog : Program) where
|
|||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||||
|
||||
-- We now have our (state -> (variables -> value)) map.
|
||||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||||
-- since the State type is as specific as possible, it's always possible to
|
||||
-- retrieve the variable values at each state.
|
||||
|
||||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||||
|
||||
variablesAt : State → StateVariables → VariableValues
|
||||
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||||
|
||||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||||
--
|
||||
-- L₁ → (A → L₂)
|
||||
|
@ -116,8 +130,15 @@ module WithProg (prog : Program) where
|
|||
renaming
|
||||
( f' to joinAll
|
||||
; f'-Monotonic to joinAll-Mono
|
||||
; f'-k∈ks-≡ to joinAll-k∈ks-≡
|
||||
)
|
||||
|
||||
variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) →
|
||||
variablesAt s (joinAll sv) ≡ joinForKey s sv
|
||||
variablesAt-joinAll s sv
|
||||
with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
|
||||
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||||
|
||||
-- With 'join' in hand, we need to perform abstract evaluation.
|
||||
module WithEvaluator (eval : Expr → VariableValues → L)
|
||||
(eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where
|
||||
|
@ -131,12 +152,11 @@ module WithProg (prog : Program) where
|
|||
renaming
|
||||
( f' to updateVariablesFromExpression
|
||||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||||
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
|
||||
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
|
||||
)
|
||||
public
|
||||
|
||||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||||
|
||||
-- The per-state update function makes use of the single-key setter,
|
||||
-- updateVariablesFromExpression, for the case where the statement
|
||||
-- is an assignment.
|
||||
|
@ -155,11 +175,7 @@ module WithProg (prog : Program) where
|
|||
|
||||
updateVariablesForState : State → StateVariables → VariableValues
|
||||
updateVariablesForState s sv =
|
||||
let
|
||||
bss = code s
|
||||
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
|
||||
in
|
||||
foldr updateVariablesFromStmt vs bss
|
||||
foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s)
|
||||
|
||||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
|
||||
|
@ -169,14 +185,15 @@ module WithProg (prog : Program) where
|
|||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||||
in
|
||||
foldr-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
|
||||
updateVariablesFromStmt updateVariablesFromStmt-Monoʳ
|
||||
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
|
||||
(flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ
|
||||
vs₁≼vs₂
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
renaming
|
||||
( f' to updateAll
|
||||
; f'-Monotonic to updateAll-Mono
|
||||
; f'-k∈ks-≡ to updateAll-k∈ks-≡
|
||||
)
|
||||
|
||||
-- Finally, the whole analysis consists of getting the 'join'
|
||||
|
@ -194,5 +211,62 @@ module WithProg (prog : Program) where
|
|||
-- The fixed point of the 'analyze' function is our final goal.
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to result)
|
||||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||||
public
|
||||
|
||||
variablesAt-updateAll : ∀ (s : State) (sv : StateVariables) →
|
||||
variablesAt s (updateAll sv) ≡ updateVariablesForState s sv
|
||||
variablesAt-updateAll s sv
|
||||
with (vs , s,vs∈usv) ← locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
|
||||
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||||
|
||||
module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where
|
||||
open LatticeInterpretation latticeInterpretationˡ
|
||||
using ()
|
||||
renaming (⟦_⟧ to ⟦_⟧ˡ; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ)
|
||||
|
||||
⟦_⟧ᵛ : VariableValues → Env → Set
|
||||
⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v
|
||||
|
||||
|
||||
⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ
|
||||
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
|
||||
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
|
||||
let
|
||||
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
|
||||
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
|
||||
in
|
||||
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
|
||||
|
||||
InterpretationValid : Set
|
||||
InterpretationValid = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v
|
||||
|
||||
module WithValidity (interpretationValidˡ : InterpretationValid) where
|
||||
|
||||
updateVariablesFromStmt-matches : ∀ {bs vs ρ₁ ρ₂} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
|
||||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ₁ = ⟦vs⟧ρ₁
|
||||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ₁ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
|
||||
with k ≟ˢ k' | k',v'∈ρ₂
|
||||
... | yes refl | here _ v _
|
||||
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
|
||||
interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ₁
|
||||
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
|
||||
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
|
||||
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
|
||||
let
|
||||
k'∉[k] = (λ { (Any.here refl) → k≢k' refl })
|
||||
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
|
||||
in
|
||||
⟦vs⟧ρ₁ k',l∈vs k',v'∈ρ₁
|
||||
|
||||
updateVariablesFromStmt-fold-matches : ∀ {bss vs ρ₁ ρ₂} → ρ₁ , bss ⇒ᵇˢ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂
|
||||
updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ
|
||||
updateVariablesFromStmt-fold-matches {bs ∷ bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ∷ ρ,bss'⇒ρ₂) ⟦vs⟧ρ₁ =
|
||||
updateVariablesFromStmt-fold-matches {bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂ (updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ₁)
|
||||
|
||||
updateVariablesForState-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ updateVariablesForState s sv ⟧ᵛ ρ₂
|
||||
updateVariablesForState-matches = updateVariablesFromStmt-fold-matches
|
||||
|
||||
updateAll-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
|
||||
updateAll-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁ rewrite variablesAt-updateAll s sv =
|
||||
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||||
|
|
19
Lattice.agda
19
Lattice.agda
|
@ -137,7 +137,7 @@ module _ {a b} {A : Set a} {B : Set b}
|
|||
const-Mono : ∀ (x : B) → Monotonic _≼₁_ _≼₂_ (λ _ → x)
|
||||
const-Mono x _ = ⊔₂-idemp x
|
||||
|
||||
open import Data.List as List using (List; foldr; _∷_)
|
||||
open import Data.List as List using (List; foldr; foldl; _∷_)
|
||||
open import Utils using (Pairwise; _∷_)
|
||||
|
||||
foldr-Mono : ∀ (l₁ l₂ : List A) (f : A → B → B) (b₁ b₂ : B) →
|
||||
|
@ -150,13 +150,22 @@ module _ {a b} {A : Set a} {B : Set b}
|
|||
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
|
||||
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
|
||||
|
||||
foldl-Mono : ∀ (l₁ l₂ : List A) (f : B → A → B) (b₁ b₂ : B) →
|
||||
Pairwise _≼₁_ l₁ l₂ → b₁ ≼₂ b₂ →
|
||||
(∀ a → Monotonic _≼₂_ _≼₂_ (λ b → f b a)) →
|
||||
(∀ b → Monotonic _≼₁_ _≼₂_ (f b)) →
|
||||
foldl f b₁ l₁ ≼₂ foldl f b₂ l₂
|
||||
foldl-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
|
||||
foldl-Mono (x ∷ xs) (y ∷ ys) f b₁ b₂ (x≼y ∷ xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
|
||||
foldl-Mono xs ys f (f b₁ x) (f b₂ y) xs≼ys (≼₂-trans (f-Mono₁ x b₁≼b₂) (f-Mono₂ b₂ x≼y)) f-Mono₁ f-Mono₂
|
||||
|
||||
module _ {a b} {A : Set a} {B : Set b}
|
||||
{_≈₂_ : B → B → Set b} {_⊔₂_ : B → B → B}
|
||||
(lB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||
|
||||
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
|
||||
|
||||
open import Data.List as List using (List; foldr; _∷_)
|
||||
open import Data.List as List using (List; foldr; foldl; _∷_)
|
||||
open import Utils using (Pairwise; _∷_)
|
||||
|
||||
foldr-Mono' : ∀ (l : List A) (f : A → B → B) →
|
||||
|
@ -165,6 +174,12 @@ module _ {a b} {A : Set a} {B : Set b}
|
|||
foldr-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
|
||||
foldr-Mono' (x ∷ xs) f f-Mono₂ b₁≼b₂ = f-Mono₂ x (foldr-Mono' xs f f-Mono₂ b₁≼b₂)
|
||||
|
||||
foldl-Mono' : ∀ (l : List A) (f : B → A → B) →
|
||||
(∀ b → Monotonic _≼₂_ _≼₂_ (λ a → f a b)) →
|
||||
Monotonic _≼₂_ _≼₂_ (λ b → foldl f b l)
|
||||
foldl-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
|
||||
foldl-Mono' (x ∷ xs) f f-Mono₁ b₁≼b₂ = foldl-Mono' xs f f-Mono₁ (f-Mono₁ x b₁≼b₂)
|
||||
|
||||
record IsLattice {a} (A : Set a)
|
||||
(_≈_ : A → A → Set a)
|
||||
(_⊔_ : A → A → A)
|
||||
|
|
|
@ -35,6 +35,11 @@ open import Lattice.Map ≡-dec-A lB as Map
|
|||
; keys to keysᵐ
|
||||
; _updating_via_ to _updatingᵐ_via_
|
||||
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
|
||||
; updating-via-k∈ks to updatingᵐ-via-k∈ks
|
||||
; updating-via-k∈ks-≡ to updatingᵐ-via-k∈ks-≡
|
||||
; updating-via-∈k-forward to updatingᵐ-via-∈k-forward
|
||||
; updating-via-k∉ks-forward to updatingᵐ-via-k∉ks-forward
|
||||
; updating-via-k∉ks-backward to updatingᵐ-via-k∉ks-backward
|
||||
; f'-Monotonic to f'-Monotonicᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ∈k-dec to ∈k-decᵐ
|
||||
|
@ -83,6 +88,8 @@ module WithKeys (ks : List A) where
|
|||
_∈k_ : A → FiniteMap → Set a
|
||||
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
|
||||
|
||||
open Map using (forget) public
|
||||
|
||||
∈k-dec = ∈k-decᵐ
|
||||
|
||||
locate : ∀ {k : A} {fm : FiniteMap} → k ∈k fm → Σ B (λ v → (k , v) ∈ fm)
|
||||
|
@ -171,6 +178,21 @@ module WithKeys (ks : List A) where
|
|||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
|
||||
f'-∈k-forward : ∀ {k l} → k ∈k (f l) → k ∈k (f' l)
|
||||
f'-∈k-forward {k} {l} = updatingᵐ-via-∈k-forward (proj₁ (f l)) ks (updater l)
|
||||
|
||||
f'-k∈ks : ∀ {k l} → k ∈ˡ ks → k ∈k (f' l) → (k , updater l k) ∈ (f' l)
|
||||
f'-k∈ks {k} {l} = updatingᵐ-via-k∈ks (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∈ks-≡ : ∀ {k v l} → k ∈ˡ ks → (k , v) ∈ (f' l) → v ≡ updater l k
|
||||
f'-k∈ks-≡ {k} {v} {l} = updatingᵐ-via-k∈ks-≡ (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∉ks-forward : ∀ {k v l} → ¬ k ∈ˡ ks → (k , v) ∈ (f l) → (k , v) ∈ (f' l)
|
||||
f'-k∉ks-forward {k} {v} {l} = updatingᵐ-via-k∉ks-forward (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∉ks-backward : ∀ {k v l} → ¬ k ∈ˡ ks → (k , v) ∈ (f' l) → (k , v) ∈ (f l)
|
||||
f'-k∉ks-backward {k} {v} {l} = updatingᵐ-via-k∉ks-backward (proj₁ (f l)) (updater l)
|
||||
|
||||
all-equal-keys : ∀ (fm₁ fm₂ : FiniteMap) → (Map.keys (proj₁ fm₁) ≡ Map.keys (proj₁ fm₂))
|
||||
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ open import Isomorphism using (IsInverseˡ; IsInverseʳ)
|
|||
open import Lattice.Map ≡-dec-A lB
|
||||
using
|
||||
( subset-impl
|
||||
; locate; forget
|
||||
; locate
|
||||
; Map-functional
|
||||
; Expr-Provenance
|
||||
; Expr-Provenance-≡
|
||||
|
|
Loading…
Reference in New Issue
Block a user