Compare commits
No commits in common. "3859826293033ea1d4e7fd973a279141523d9fec" and "91b5d108f61a37dda9dfa5d2667fa3da47b4c4c0" have entirely different histories.
3859826293
...
91b5d108f6
|
@ -1,19 +1,15 @@
|
||||||
module Analysis.Sign where
|
module Analysis.Sign where
|
||||||
|
|
||||||
open import Data.Integer using (ℤ; +_; -[1+_])
|
open import Data.Nat using (suc)
|
||||||
open import Data.Nat using (ℕ; suc; zero)
|
open import Data.Product using (proj₁; _,_)
|
||||||
open import Data.Product using (Σ; proj₁; _,_)
|
|
||||||
open import Data.Sum using (inj₁; inj₂)
|
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Data.Unit using (⊤; tt)
|
|
||||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||||
open import Relation.Nullary using (¬_; yes; no)
|
open import Relation.Nullary using (yes; no)
|
||||||
|
|
||||||
open import Language
|
open import Language
|
||||||
open import Lattice
|
open import Lattice
|
||||||
open import Showable using (Showable; show)
|
open import Showable using (Showable; show)
|
||||||
open import Utils using (_⇒_; _∧_; _∨_)
|
|
||||||
import Analysis.Forward
|
import Analysis.Forward
|
||||||
|
|
||||||
data Sign : Set where
|
data Sign : Set where
|
||||||
|
@ -65,7 +61,6 @@ open AB.Plain 0ˢ using ()
|
||||||
; fixedHeight to fixedHeightᵍ
|
; fixedHeight to fixedHeightᵍ
|
||||||
; _≼_ to _≼ᵍ_
|
; _≼_ to _≼ᵍ_
|
||||||
; _⊔_ to _⊔ᵍ_
|
; _⊔_ to _⊔ᵍ_
|
||||||
; _⊓_ to _⊓ᵍ_
|
|
||||||
)
|
)
|
||||||
|
|
||||||
open IsLattice isLatticeᵍ using ()
|
open IsLattice isLatticeᵍ using ()
|
||||||
|
@ -111,62 +106,6 @@ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
|
||||||
postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂)
|
postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂)
|
||||||
postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
|
postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
|
||||||
|
|
||||||
⟦_⟧ᵍ : SignLattice → Value → Set
|
|
||||||
⟦_⟧ᵍ ⊥ᵍ _ = ⊥
|
|
||||||
⟦_⟧ᵍ ⊤ᵍ _ = ⊤
|
|
||||||
⟦_⟧ᵍ [ + ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ (suc n)))
|
|
||||||
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ zero))
|
|
||||||
⟦_⟧ᵍ [ - ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ -[1+ n ])
|
|
||||||
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ : ∀ {s₁ s₂ : SignLattice} → s₁ ≈ᵍ s₂ → ⟦ s₁ ⟧ᵍ ⇒ ⟦ s₂ ⟧ᵍ
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof
|
|
||||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof
|
|
||||||
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∨ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊔ᵍ s₂ ⟧ᵍ
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ {⊥ᵍ} x (inj₂ px₂) = px₂
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ {⊤ᵍ} x _ = tt
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px
|
|
||||||
with s₁ ≟ᵍ s₂
|
|
||||||
... | no _ = tt
|
|
||||||
... | yes refl
|
|
||||||
with px
|
|
||||||
... | inj₁ px₁ = px₁
|
|
||||||
... | inj₂ px₂ = px₂
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁
|
|
||||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt
|
|
||||||
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ : ∀ {s₁ s₂ : Sign} → ¬ s₁ ≡ s₂ → ∀ {v} → ¬ ((⟦ [ s₁ ]ᵍ ⟧ᵍ ∧ ⟦ [ s₂ ]ᵍ ⟧ᵍ) v)
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl)
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl)
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , (m , ()))
|
|
||||||
s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
|
|
||||||
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∧ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊓ᵍ s₂ ⟧ᵍ
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂)
|
|
||||||
with s₁ ≟ᵍ s₂
|
|
||||||
... | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂)
|
|
||||||
... | yes refl = px₁
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot
|
|
||||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁
|
|
||||||
|
|
||||||
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
|
|
||||||
latticeInterpretationᵍ = record
|
|
||||||
{ ⟦_⟧ = ⟦_⟧ᵍ
|
|
||||||
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ
|
|
||||||
; ⟦⟧-⊔-∨ = ⟦⟧ᵍ-⊔ᵍ-∨
|
|
||||||
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧
|
|
||||||
}
|
|
||||||
|
|
||||||
module WithProg (prog : Program) where
|
module WithProg (prog : Program) where
|
||||||
open Program prog
|
open Program prog
|
||||||
|
|
||||||
|
|
|
@ -15,7 +15,7 @@ open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-s
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
|
||||||
|
|
||||||
open import Lattice
|
open import Lattice
|
||||||
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct)
|
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
|
||||||
|
|
||||||
record Graph : Set where
|
record Graph : Set where
|
||||||
constructor MkGraph
|
constructor MkGraph
|
||||||
|
|
|
@ -2,7 +2,6 @@ module Language.Semantics where
|
||||||
|
|
||||||
open import Language.Base
|
open import Language.Base
|
||||||
|
|
||||||
open import Agda.Primitive using (lsuc)
|
|
||||||
open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
||||||
open import Data.Product using (_×_; _,_)
|
open import Data.Product using (_×_; _,_)
|
||||||
open import Data.String using (String)
|
open import Data.String using (String)
|
||||||
|
@ -11,9 +10,6 @@ open import Data.Nat using (ℕ)
|
||||||
open import Relation.Nullary using (¬_)
|
open import Relation.Nullary using (¬_)
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_)
|
open import Relation.Binary.PropositionalEquality using (_≡_)
|
||||||
|
|
||||||
open import Lattice
|
|
||||||
open import Utils using (_⇒_; _∧_; _∨_)
|
|
||||||
|
|
||||||
data Value : Set where
|
data Value : Set where
|
||||||
↑ᶻ : ℤ → Value
|
↑ᶻ : ℤ → Value
|
||||||
|
|
||||||
|
@ -62,12 +58,3 @@ data _,_⇒ˢ_ : Env → Stmt → Env → Set where
|
||||||
⇒ˢ-while-false : ∀ (ρ : Env) (e : Expr) (s : Stmt) →
|
⇒ˢ-while-false : ∀ (ρ : Env) (e : Expr) (s : Stmt) →
|
||||||
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
|
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
|
||||||
ρ , (while e repeat s) ⇒ˢ ρ
|
ρ , (while e repeat s) ⇒ˢ ρ
|
||||||
|
|
||||||
record LatticeInterpretation {l} {L : Set l} {_≈_ : L → L → Set l}
|
|
||||||
{_⊔_ : L → L → L} {_⊓_ : L → L → L}
|
|
||||||
(isLattice : IsLattice L _≈_ _⊔_ _⊓_) : Set (lsuc l) where
|
|
||||||
field
|
|
||||||
⟦_⟧ : L → Value → Set
|
|
||||||
⟦⟧-respects-≈ : ∀ {l₁ l₂ : L} → l₁ ≈ l₂ → ⟦ l₁ ⟧ ⇒ ⟦ l₂ ⟧
|
|
||||||
⟦⟧-⊔-∨ : ∀ {l₁ l₂ : L} → (⟦ l₁ ⟧ ∨ ⟦ l₂ ⟧) ⇒ ⟦ l₁ ⊔ l₂ ⟧
|
|
||||||
⟦⟧-⊓-∧ : ∀ {l₁ l₂ : L} → (⟦ l₁ ⟧ ∧ ⟦ l₂ ⟧) ⇒ ⟦ l₁ ⊓ l₂ ⟧
|
|
||||||
|
|
25
Utils.agda
25
Utils.agda
|
@ -1,14 +1,13 @@
|
||||||
module Utils where
|
module Utils where
|
||||||
|
|
||||||
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
||||||
open import Data.Product as Prod using (_×_)
|
open import Data.Product as Prod using ()
|
||||||
open import Data.Nat using (ℕ; suc)
|
open import Data.Nat using (ℕ; suc)
|
||||||
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr) renaming (map to mapˡ)
|
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr) renaming (map to mapˡ)
|
||||||
open import Data.List.Membership.Propositional using (_∈_)
|
open import Data.List.Membership.Propositional using (_∈_)
|
||||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
||||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||||
open import Data.Sum using (_⊎_)
|
|
||||||
open import Function.Definitions using (Injective)
|
open import Function.Definitions using (Injective)
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
|
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
|
||||||
open import Relation.Nullary using (¬_)
|
open import Relation.Nullary using (¬_)
|
||||||
|
@ -72,6 +71,16 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
|
||||||
P x y → Pairwise P xs ys →
|
P x y → Pairwise P xs ys →
|
||||||
Pairwise P (x ∷ xs) (y ∷ ys)
|
Pairwise P (x ∷ xs) (y ∷ ys)
|
||||||
|
|
||||||
|
infixr 2 _⊗_
|
||||||
|
data _⊗_ {a p q} {A : Set a} (P : A → Set p) (Q : A → Set q) : A → Set (a ⊔ℓ p ⊔ℓ q) where
|
||||||
|
_,_ : ∀ {val : A} → P val → Q val → (P ⊗ Q) val
|
||||||
|
|
||||||
|
proj₁ : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {a : A} → (P ⊗ Q) a → P a
|
||||||
|
proj₁ (v , _) = v
|
||||||
|
|
||||||
|
proj₂ : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {a : A} → (P ⊗ Q) a → Q a
|
||||||
|
proj₂ (_ , v) = v
|
||||||
|
|
||||||
∈-cartesianProduct : ∀ {a b} {A : Set a} {B : Set b}
|
∈-cartesianProduct : ∀ {a b} {A : Set a} {B : Set b}
|
||||||
{x : A} {xs : List A} {y : B} {ys : List B} →
|
{x : A} {xs : List A} {y : B} {ys : List B} →
|
||||||
x ∈ xs → y ∈ ys → (x Prod., y) ∈ cartesianProduct xs ys
|
x ∈ xs → y ∈ ys → (x Prod., y) ∈ cartesianProduct xs ys
|
||||||
|
@ -82,15 +91,3 @@ concat-∈ : ∀ {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)} →
|
||||||
x ∈ l → l ∈ ls → x ∈ foldr _++_ [] ls
|
x ∈ l → l ∈ ls → x ∈ foldr _++_ [] ls
|
||||||
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
|
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
|
||||||
concat-∈ {ls = l' ∷ ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
|
concat-∈ {ls = l' ∷ ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
|
||||||
|
|
||||||
_⇒_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
|
||||||
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
|
|
||||||
_⇒_ P Q = ∀ a → P a → Q a
|
|
||||||
|
|
||||||
_∨_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
|
||||||
A → Set (p₁ ⊔ℓ p₂)
|
|
||||||
_∨_ P Q a = P a ⊎ Q a
|
|
||||||
|
|
||||||
_∧_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
|
||||||
A → Set (p₁ ⊔ℓ p₂)
|
|
||||||
_∧_ P Q a = P a × Q a
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user