Compare commits
No commits in common. "45f2babfa390ad860d7ecd11bd5bf9de85dd79cd" and "a55c786a51dca21c9688384d05e0e89966403900" have entirely different histories.
45f2babfa3
...
a55c786a51
11
Lattice.agda
11
Lattice.agda
@ -145,14 +145,3 @@ record Lattice {a} (A : Set a) : Set (lsuc a) where
|
|||||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||||
|
|
||||||
open IsLattice isLattice public
|
open IsLattice isLattice public
|
||||||
|
|
||||||
record FiniteHeightLattice {a} (A : Set a) : Set (lsuc a) where
|
|
||||||
field
|
|
||||||
height : ℕ
|
|
||||||
_≈_ : A → A → Set a
|
|
||||||
_⊔_ : A → A → A
|
|
||||||
_⊓_ : A → A → A
|
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
|
||||||
|
|
||||||
open IsFiniteHeightLattice isFiniteHeightLattice public
|
|
||||||
|
@ -1,78 +0,0 @@
|
|||||||
open import Lattice
|
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
|
||||||
open import Relation.Binary.Definitions using (Decidable)
|
|
||||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
|
||||||
open import Data.List using (List)
|
|
||||||
|
|
||||||
module Lattice.FiniteMap {a b : Level} (A : Set a) (B : Set b)
|
|
||||||
(_≈₂_ : B → B → Set b)
|
|
||||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
|
||||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
|
||||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
|
||||||
|
|
||||||
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map
|
|
||||||
using (Map; ⊔-equal-keys; ⊓-equal-keys)
|
|
||||||
renaming
|
|
||||||
( _≈_ to _≈ᵐ_
|
|
||||||
; _⊔_ to _⊔ᵐ_
|
|
||||||
; _⊓_ to _⊓ᵐ_
|
|
||||||
; ≈-equiv to ≈ᵐ-equiv
|
|
||||||
; ≈-⊔-cong to ≈ᵐ-⊔ᵐ-cong
|
|
||||||
; ⊔-assoc to ⊔ᵐ-assoc
|
|
||||||
; ⊔-comm to ⊔ᵐ-comm
|
|
||||||
; ⊔-idemp to ⊔ᵐ-idemp
|
|
||||||
; ≈-⊓-cong to ≈ᵐ-⊓ᵐ-cong
|
|
||||||
; ⊓-assoc to ⊓ᵐ-assoc
|
|
||||||
; ⊓-comm to ⊓ᵐ-comm
|
|
||||||
; ⊓-idemp to ⊓ᵐ-idemp
|
|
||||||
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
|
||||||
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
|
||||||
)
|
|
||||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
|
||||||
open import Equivalence
|
|
||||||
|
|
||||||
module _ (ks : List A) where
|
|
||||||
FiniteMap : Set (a ⊔ℓ b)
|
|
||||||
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
|
||||||
|
|
||||||
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
|
||||||
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
|
||||||
|
|
||||||
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
|
||||||
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
|
||||||
|
|
||||||
_⊓_ : FiniteMap → FiniteMap → FiniteMap
|
|
||||||
_⊓_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊓ᵐ m₂ , trans (sym (⊓-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
|
||||||
|
|
||||||
≈-equiv : IsEquivalence FiniteMap _≈_
|
|
||||||
≈-equiv = record
|
|
||||||
{ ≈-refl = λ {(m , _)} → IsEquivalence.≈-refl ≈ᵐ-equiv {m}
|
|
||||||
; ≈-sym = λ {(m₁ , _)} {(m₂ , _)} → IsEquivalence.≈-sym ≈ᵐ-equiv {m₁} {m₂}
|
|
||||||
; ≈-trans = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} → IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
|
|
||||||
}
|
|
||||||
|
|
||||||
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
|
||||||
isUnionSemilattice = record
|
|
||||||
{ ≈-equiv = ≈-equiv
|
|
||||||
; ≈-⊔-cong = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ → ≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
|
||||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊔ᵐ-assoc m₁ m₂ m₃
|
|
||||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊔ᵐ-comm m₁ m₂
|
|
||||||
; ⊔-idemp = λ (m , _) → ⊔ᵐ-idemp m
|
|
||||||
}
|
|
||||||
|
|
||||||
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
|
|
||||||
isIntersectSemilattice = record
|
|
||||||
{ ≈-equiv = ≈-equiv
|
|
||||||
; ≈-⊔-cong = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ → ≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
|
||||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊓ᵐ-assoc m₁ m₂ m₃
|
|
||||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊓ᵐ-comm m₁ m₂
|
|
||||||
; ⊔-idemp = λ (m , _) → ⊓ᵐ-idemp m
|
|
||||||
}
|
|
||||||
|
|
||||||
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
|
|
||||||
isLattice = record
|
|
||||||
{ joinSemilattice = isUnionSemilattice
|
|
||||||
; meetSemilattice = isIntersectSemilattice
|
|
||||||
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) → absorb-⊔ᵐ-⊓ᵐ m₁ m₂
|
|
||||||
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) → absorb-⊓ᵐ-⊔ᵐ m₁ m₂
|
|
||||||
}
|
|
@ -1,107 +0,0 @@
|
|||||||
open import Lattice
|
|
||||||
|
|
||||||
module Lattice.IterProd {a} {A B : Set a}
|
|
||||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
|
||||||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
|
||||||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
|
||||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
|
||||||
|
|
||||||
open import Agda.Primitive using (lsuc)
|
|
||||||
open import Data.Nat using (ℕ; suc; _+_)
|
|
||||||
open import Data.Product using (_×_)
|
|
||||||
open import Utils using (iterate)
|
|
||||||
|
|
||||||
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
|
|
||||||
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
|
|
||||||
|
|
||||||
IterProd : ℕ → Set a
|
|
||||||
IterProd k = iterate k (λ t → A × t) B
|
|
||||||
|
|
||||||
-- To make iteration more convenient, package the definitions in Lattice
|
|
||||||
-- records, perform the recursion, and unpackage.
|
|
||||||
|
|
||||||
private module _ where
|
|
||||||
BLattice : Lattice B
|
|
||||||
BLattice = record
|
|
||||||
{ _≈_ = _≈₂_
|
|
||||||
; _⊔_ = _⊔₂_
|
|
||||||
; _⊓_ = _⊓₂_
|
|
||||||
; isLattice = lB
|
|
||||||
}
|
|
||||||
|
|
||||||
IterProdLattice : ∀ {k : ℕ} → Lattice (IterProd k)
|
|
||||||
IterProdLattice {0} = BLattice
|
|
||||||
IterProdLattice {suc k'} = record
|
|
||||||
{ _≈_ = _≈_
|
|
||||||
; _⊔_ = _⊔_
|
|
||||||
; _⊓_ = _⊓_
|
|
||||||
; isLattice = isLattice
|
|
||||||
}
|
|
||||||
where
|
|
||||||
Right : Lattice (IterProd k')
|
|
||||||
Right = IterProdLattice {k'}
|
|
||||||
|
|
||||||
open import Lattice.Prod
|
|
||||||
_≈₁_ (Lattice._≈_ Right)
|
|
||||||
_⊔₁_ (Lattice._⊔_ Right)
|
|
||||||
_⊓₁_ (Lattice._⊓_ Right)
|
|
||||||
lA (Lattice.isLattice Right)
|
|
||||||
|
|
||||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
|
||||||
(h₁ h₂ : ℕ)
|
|
||||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
|
||||||
|
|
||||||
private module _ where
|
|
||||||
record FiniteHeightAndDecEq (A : Set a) : Set (lsuc a) where
|
|
||||||
field
|
|
||||||
height : ℕ
|
|
||||||
_≈_ : A → A → Set a
|
|
||||||
_⊔_ : A → A → A
|
|
||||||
_⊓_ : A → A → A
|
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
|
||||||
≈-dec : IsDecidable _≈_
|
|
||||||
|
|
||||||
open IsFiniteHeightLattice isFiniteHeightLattice public
|
|
||||||
|
|
||||||
BFiniteHeightLattice : FiniteHeightAndDecEq B
|
|
||||||
BFiniteHeightLattice = record
|
|
||||||
{ height = h₂
|
|
||||||
; _≈_ = _≈₂_
|
|
||||||
; _⊔_ = _⊔₂_
|
|
||||||
; _⊓_ = _⊓₂_
|
|
||||||
; isFiniteHeightLattice = record
|
|
||||||
{ isLattice = lB
|
|
||||||
; fixedHeight = fhB
|
|
||||||
}
|
|
||||||
; ≈-dec = ≈₂-dec
|
|
||||||
}
|
|
||||||
|
|
||||||
IterProdFiniteHeightLattice : ∀ {k : ℕ} → FiniteHeightAndDecEq (IterProd k)
|
|
||||||
IterProdFiniteHeightLattice {0} = BFiniteHeightLattice
|
|
||||||
IterProdFiniteHeightLattice {suc k'} = record
|
|
||||||
{ height = h₁ + FiniteHeightAndDecEq.height Right
|
|
||||||
; _≈_ = _≈_
|
|
||||||
; _⊔_ = _⊔_
|
|
||||||
; _⊓_ = _⊓_
|
|
||||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
|
||||||
≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
|
||||||
h₁ (FiniteHeightAndDecEq.height Right)
|
|
||||||
fhA (IsFiniteHeightLattice.fixedHeight (FiniteHeightAndDecEq.isFiniteHeightLattice Right))
|
|
||||||
; ≈-dec = ≈-dec ≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
|
||||||
}
|
|
||||||
where
|
|
||||||
Right = IterProdFiniteHeightLattice {k'}
|
|
||||||
|
|
||||||
open import Lattice.Prod
|
|
||||||
_≈₁_ (FiniteHeightAndDecEq._≈_ Right)
|
|
||||||
_⊔₁_ (FiniteHeightAndDecEq._⊔_ Right)
|
|
||||||
_⊓₁_ (FiniteHeightAndDecEq._⊓_ Right)
|
|
||||||
lA (FiniteHeightAndDecEq.isLattice Right)
|
|
||||||
|
|
||||||
module _ (k : ℕ) where
|
|
||||||
open FiniteHeightAndDecEq (IterProdFiniteHeightLattice {k}) using (fixedHeight) public
|
|
||||||
|
|
||||||
-- Expose the computed definition in public.
|
|
||||||
module _ (k : ℕ) where
|
|
||||||
open Lattice.Lattice (IterProdLattice {k}) public
|
|
163
Lattice/Map.agda
163
Lattice/Map.agda
@ -19,7 +19,6 @@ open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-ex
|
|||||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
open import Utils using (Unique; push; empty; Unique-append; All¬-¬Any; All-x∈xs)
|
|
||||||
|
|
||||||
open IsLattice lB using () renaming
|
open IsLattice lB using () renaming
|
||||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||||
@ -29,13 +28,35 @@ open IsLattice lB using () renaming
|
|||||||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||||||
)
|
)
|
||||||
|
|
||||||
private module ImplKeys where
|
keys : List (A × B) → List A
|
||||||
keys : List (A × B) → List A
|
keys = map proj₁
|
||||||
keys = map proj₁
|
|
||||||
|
data Unique {c} {C : Set c} : List C → Set c where
|
||||||
|
empty : Unique []
|
||||||
|
push : ∀ {x : C} {xs : List C}
|
||||||
|
→ All (λ x' → ¬ x ≡ x') xs
|
||||||
|
→ Unique xs
|
||||||
|
→ Unique (x ∷ xs)
|
||||||
|
|
||||||
|
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
|
||||||
|
¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ []))
|
||||||
|
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
||||||
|
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
||||||
|
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
||||||
|
where
|
||||||
|
x'≢x : ¬ x' ≡ x
|
||||||
|
x'≢x x'≡x = x∉xs (here (sym x'≡x))
|
||||||
|
|
||||||
|
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
|
||||||
|
help {[]} _ = x'≢x ∷ []
|
||||||
|
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
||||||
|
|
||||||
|
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
||||||
|
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
||||||
|
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
||||||
|
|
||||||
private module _ where
|
private module _ where
|
||||||
open MemProp using (_∈_)
|
open MemProp using (_∈_)
|
||||||
open ImplKeys
|
|
||||||
|
|
||||||
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
||||||
@ -87,7 +108,6 @@ private module ImplRelation where
|
|||||||
private module ImplInsert (f : B → B → B) where
|
private module ImplInsert (f : B → B → B) where
|
||||||
open import Data.List using (map)
|
open import Data.List using (map)
|
||||||
open MemProp using (_∈_)
|
open MemProp using (_∈_)
|
||||||
open ImplKeys
|
|
||||||
|
|
||||||
private
|
private
|
||||||
_∈k_ : A → List (A × B) → Set a
|
_∈k_ : A → List (A × B) → Set a
|
||||||
@ -133,20 +153,6 @@ private module ImplInsert (f : B → B → B) where
|
|||||||
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
|
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
|
||||||
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
|
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
|
||||||
|
|
||||||
union-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
||||||
All (λ k → k ∈k l₂) (keys l₁) →
|
|
||||||
keys l₂ ≡ keys (union l₁ l₂)
|
|
||||||
union-subset-keys {[]} _ = refl
|
|
||||||
union-subset-keys {(k , v) ∷ l₁'} (k∈kl₂ ∷ kl₁'⊆kl₂)
|
|
||||||
rewrite union-subset-keys kl₁'⊆kl₂ =
|
|
||||||
insert-keys-∈ k∈kl₂
|
|
||||||
|
|
||||||
union-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
||||||
keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂)
|
|
||||||
union-equal-keys {l₁} {l₂} kl₁≡kl₂
|
|
||||||
with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁))
|
|
||||||
... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂)
|
|
||||||
|
|
||||||
union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) →
|
union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) →
|
||||||
Unique (keys l₂) → Unique (keys (union l₁ l₂))
|
Unique (keys l₂) → Unique (keys (union l₁ l₂))
|
||||||
union-preserves-Unique [] l₂ u₂ = u₂
|
union-preserves-Unique [] l₂ u₂ = u₂
|
||||||
@ -360,29 +366,6 @@ private module ImplInsert (f : B → B → B) where
|
|||||||
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||||||
in (k∈kl₁ , there k∈kxs)
|
in (k∈kl₁ , there k∈kxs)
|
||||||
|
|
||||||
restrict-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
||||||
All (λ k → k ∈k l₁) (keys l₂) →
|
|
||||||
keys l₂ ≡ keys (restrict l₁ l₂)
|
|
||||||
restrict-subset-keys {l₁} {[]} _ = refl
|
|
||||||
restrict-subset-keys {l₁} {(k , v) ∷ l₂'} (k∈kl₁ ∷ kl₂'⊆kl₁)
|
|
||||||
with ∈k-dec k l₁
|
|
||||||
... | no k∉kl₁ = ⊥-elim (k∉kl₁ k∈kl₁)
|
|
||||||
... | yes _ rewrite restrict-subset-keys {l₁} {l₂'} kl₂'⊆kl₁ = refl
|
|
||||||
|
|
||||||
restrict-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
||||||
keys l₁ ≡ keys l₂ →
|
|
||||||
keys l₁ ≡ keys (restrict l₁ l₂)
|
|
||||||
restrict-equal-keys {l₁} {l₂} kl₁≡kl₂
|
|
||||||
with subst (λ l → All (λ k → k ∈ l) (keys l₂)) (sym kl₁≡kl₂) (All-x∈xs (keys l₂))
|
|
||||||
... | kl₂⊆kl₁ = trans kl₁≡kl₂ (restrict-subset-keys {l₁} {l₂} kl₂⊆kl₁)
|
|
||||||
|
|
||||||
intersect-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
||||||
keys l₁ ≡ keys l₂ →
|
|
||||||
keys l₁ ≡ keys (intersect l₁ l₂)
|
|
||||||
intersect-equal-keys {l₁} {l₂} kl₁≡kl₂
|
|
||||||
rewrite restrict-equal-keys (trans kl₁≡kl₂ (updates-keys {l₁} {l₂}))
|
|
||||||
rewrite updates-keys {l₁} {l₂} = refl
|
|
||||||
|
|
||||||
restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||||||
¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂
|
¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂
|
||||||
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
|
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
|
||||||
@ -465,16 +448,13 @@ private module ImplInsert (f : B → B → B) where
|
|||||||
|
|
||||||
|
|
||||||
Map : Set (a ⊔ℓ b)
|
Map : Set (a ⊔ℓ b)
|
||||||
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
Map = Σ (List (A × B)) (λ l → Unique (keys l))
|
||||||
|
|
||||||
keys : Map → List A
|
|
||||||
keys (kvs , _) = ImplKeys.keys kvs
|
|
||||||
|
|
||||||
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
||||||
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
||||||
|
|
||||||
_∈k_ : A → Map → Set a
|
_∈k_ : A → Map → Set a
|
||||||
_∈k_ k m = MemProp._∈_ k (keys m)
|
_∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs)
|
||||||
|
|
||||||
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
||||||
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
||||||
@ -512,8 +492,8 @@ data Expr : Set (a ⊔ℓ b) where
|
|||||||
_∪_ : Expr → Expr → Expr
|
_∪_ : Expr → Expr → Expr
|
||||||
_∩_ : Expr → Expr → Expr
|
_∩_ : Expr → Expr → Expr
|
||||||
|
|
||||||
open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys) renaming (insert to insert-impl; union to union-impl)
|
open ImplInsert _⊔₂_ using (union-preserves-Unique) renaming (insert to insert-impl; union to union-impl)
|
||||||
open ImplInsert _⊓₂_ using (intersect-preserves-Unique; intersect-equal-keys) renaming (intersect to intersect-impl)
|
open ImplInsert _⊓₂_ using (intersect-preserves-Unique) renaming (intersect to intersect-impl)
|
||||||
|
|
||||||
_⊔_ : Map → Map → Map
|
_⊔_ : Map → Map → Map
|
||||||
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||||||
@ -573,46 +553,45 @@ Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
|||||||
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
||||||
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||||||
|
|
||||||
|
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||||||
|
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||||||
|
mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂
|
||||||
|
fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂
|
||||||
|
|
||||||
|
SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||||||
|
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
|
||||||
|
let (v , k,v∈m₁) = locate k∈km₁
|
||||||
|
in no (λ m₁⊆m₂ →
|
||||||
|
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
||||||
|
in k∉km₂ (∈-cong proj₁ k,v'∈m₂))
|
||||||
|
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
|
||||||
|
no (λ m₁⊆m₂ →
|
||||||
|
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
|
||||||
|
in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
|
||||||
|
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
|
||||||
|
|
||||||
module _ (≈₂-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈₂ b₂)) where
|
module _ (≈₂-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈₂ b₂)) where
|
||||||
private module _ where
|
compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂
|
||||||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
|
||||||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
|
||||||
mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂
|
with compute-SubsetInfo (xs₁ , uxs₁) m₂
|
||||||
fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂
|
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
|
||||||
|
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
|
||||||
SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂)
|
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
|
||||||
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
|
... | fine xs₁⊆m₂ with ∈k-dec k l₂
|
||||||
let (v , k,v∈m₁) = locate k∈km₁
|
... | no k∉km₂ = extra k (here refl) k∉km₂
|
||||||
in no (λ m₁⊆m₂ →
|
... | yes k∈km₂ with locate k∈km₂
|
||||||
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
... | (v' , k,v'∈m₂) with ≈₂-dec v v'
|
||||||
in k∉km₂ (∈-cong proj₁ k,v'∈m₂))
|
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
|
||||||
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
|
... | yes v≈v' = fine m₁⊆m₂
|
||||||
no (λ m₁⊆m₂ →
|
where
|
||||||
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
|
m₁⊆m₂ : m₁ ⊆ m₂
|
||||||
in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
|
m₁⊆m₂ k' v'' (here k,v≡k',v'')
|
||||||
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
|
rewrite cong proj₁ k,v≡k',v''
|
||||||
|
rewrite cong proj₂ k,v≡k',v'' =
|
||||||
compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂
|
(v' , (v≈v' , k,v'∈m₂))
|
||||||
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
|
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
|
||||||
compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
|
xs₁⊆m₂ k' v'' k,v≡k',v''
|
||||||
with compute-SubsetInfo (xs₁ , uxs₁) m₂
|
|
||||||
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
|
|
||||||
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
|
|
||||||
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
|
|
||||||
... | fine xs₁⊆m₂ with ∈k-dec k l₂
|
|
||||||
... | no k∉km₂ = extra k (here refl) k∉km₂
|
|
||||||
... | yes k∈km₂ with locate k∈km₂
|
|
||||||
... | (v' , k,v'∈m₂) with ≈₂-dec v v'
|
|
||||||
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
|
|
||||||
... | yes v≈v' = fine m₁⊆m₂
|
|
||||||
where
|
|
||||||
m₁⊆m₂ : m₁ ⊆ m₂
|
|
||||||
m₁⊆m₂ k' v'' (here k,v≡k',v'')
|
|
||||||
rewrite cong proj₁ k,v≡k',v''
|
|
||||||
rewrite cong proj₂ k,v≡k',v'' =
|
|
||||||
(v' , (v≈v' , k,v'∈m₂))
|
|
||||||
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
|
|
||||||
xs₁⊆m₂ k' v'' k,v≡k',v''
|
|
||||||
|
|
||||||
⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂)
|
⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||||||
⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
|
⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
|
||||||
@ -881,9 +860,3 @@ isLattice = record
|
|||||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||||
}
|
}
|
||||||
|
|
||||||
⊔-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊔ m₂)
|
|
||||||
⊔-equal-keys km₁≡km₂ = union-equal-keys km₁≡km₂
|
|
||||||
|
|
||||||
⊓-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊓ m₂)
|
|
||||||
⊓-equal-keys km₁≡km₂ = intersect-equal-keys km₁≡km₂
|
|
||||||
|
@ -94,16 +94,6 @@ isLattice = record
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_) where
|
|
||||||
≈-dec : IsDecidable _≈_
|
|
||||||
≈-dec (a₁ , b₁) (a₂ , b₂)
|
|
||||||
with ≈₁-dec a₁ a₂ | ≈₂-dec b₁ b₂
|
|
||||||
... | yes a₁≈a₂ | yes b₁≈b₂ = yes (a₁≈a₂ , b₁≈b₂)
|
|
||||||
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂)
|
|
||||||
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂)
|
|
||||||
|
|
||||||
|
|
||||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||||
(h₁ h₂ : ℕ)
|
(h₁ h₂ : ℕ)
|
||||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
||||||
|
41
Utils.agda
41
Utils.agda
@ -1,41 +0,0 @@
|
|||||||
module Utils where
|
|
||||||
|
|
||||||
open import Data.Nat using (ℕ; suc)
|
|
||||||
open import Data.List using (List; []; _∷_; _++_)
|
|
||||||
open import Data.List.Membership.Propositional using (_∈_)
|
|
||||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
|
||||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
|
|
||||||
open import Relation.Nullary using (¬_)
|
|
||||||
|
|
||||||
data Unique {c} {C : Set c} : List C → Set c where
|
|
||||||
empty : Unique []
|
|
||||||
push : ∀ {x : C} {xs : List C}
|
|
||||||
→ All (λ x' → ¬ x ≡ x') xs
|
|
||||||
→ Unique xs
|
|
||||||
→ Unique (x ∷ xs)
|
|
||||||
|
|
||||||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
|
|
||||||
¬ x ∈ xs → Unique xs → Unique (xs ++ (x ∷ []))
|
|
||||||
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
|
||||||
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
|
||||||
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
|
||||||
where
|
|
||||||
x'≢x : ¬ x' ≡ x
|
|
||||||
x'≢x x'≡x = x∉xs (here (sym x'≡x))
|
|
||||||
|
|
||||||
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
|
|
||||||
help {[]} _ = x'≢x ∷ []
|
|
||||||
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
|
||||||
|
|
||||||
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
|
||||||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
|
||||||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
|
||||||
|
|
||||||
All-x∈xs : ∀ {a} {A : Set a} (xs : List A) → All (λ x → x ∈ xs) xs
|
|
||||||
All-x∈xs [] = []
|
|
||||||
All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
|
|
||||||
|
|
||||||
iterate : ∀ {a} {A : Set a} (n : ℕ) → (f : A → A) → A → A
|
|
||||||
iterate 0 _ a = a
|
|
||||||
iterate (suc n) f a = f (iterate n f a)
|
|
Loading…
Reference in New Issue
Block a user