Compare commits

..

5 Commits

Author SHA1 Message Date
6cb6281bc2 Make main run the fixed point algorithm
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-01 23:42:10 -08:00
0774946211 Expose decidability from Map modules
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-01 23:27:49 -08:00
65d1590358 Prove monotonicity of lub in one argument
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-01 23:26:25 -08:00
ae3e2c28b0 Create bundles and add a program to evaluate some code with finite maps
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-01 21:58:58 -08:00
97a4165b58 Expose bundles from FiniteValueMap
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-01 21:35:40 -08:00
8 changed files with 174 additions and 8 deletions

View File

@ -60,3 +60,12 @@ module TransportFiniteHeight
{ isLattice = lB { isLattice = lB
; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' bounded₁ (portChain₂ c')) ; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' bounded₁ (portChain₂ c'))
} }
finiteHeightLattice : FiniteHeightLattice B
finiteHeightLattice = record
{ height = height
; _≈_ = _≈₂_
; _⊔_ = _⊔₂_
; _⊓_ = _⊓₂_
; isFiniteHeightLattice = isFiniteHeightLattice
}

View File

@ -14,6 +14,12 @@ open import Function.Definitions using (Injective)
IsDecidable : {a} {A : Set a} (R : A A Set a) Set a IsDecidable : {a} {A : Set a} (R : A A Set a) Set a
IsDecidable {a} {A} R = (a₁ a₂ : A) Dec (R a₁ a₂) IsDecidable {a} {A} R = (a₁ a₂ : A) Dec (R a₁ a₂)
module _ {a b} {A : Set a} {B : Set b}
(_≼₁_ : A A Set a) (_≼₂_ : B B Set b) where
Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
record IsSemilattice {a} (A : Set a) record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a) (_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where (_⊔_ : A A A) : Set a where
@ -36,6 +42,26 @@ record IsSemilattice {a} (A : Set a)
open import Relation.Binary.Reasoning.Base.Single _≈_ ≈-refl ≈-trans open import Relation.Binary.Reasoning.Base.Single _≈_ ≈-refl ≈-trans
⊔-Monotonicˡ : (a₁ : A) Monotonic _≼_ _≼_ (λ a₂ a₁ a₂)
⊔-Monotonicˡ a {a₁} {a₂} a₁≼a₂ = ≈-trans (≈-sym lhs) (≈-⊔-cong (≈-refl {a}) a₁≼a₂)
where
lhs =
begin
a (a₁ a₂)
∼⟨ ≈-⊔-cong (≈-sym (⊔-idemp _)) ≈-refl
(a a) (a₁ a₂)
∼⟨ ⊔-assoc _ _ _
a (a (a₁ a₂))
∼⟨ ≈-⊔-cong ≈-refl (≈-sym (⊔-assoc _ _ _))
a ((a a₁) a₂)
∼⟨ ≈-⊔-cong ≈-refl (≈-⊔-cong (⊔-comm _ _) ≈-refl)
a ((a₁ a) a₂)
∼⟨ ≈-⊔-cong ≈-refl (⊔-assoc _ _ _)
a (a₁ (a a₂))
∼⟨ ≈-sym (⊔-assoc _ _ _)
(a a₁) (a a₂)
≼-refl : (a : A) a a ≼-refl : (a : A) a a
≼-refl a = ⊔-idemp a ≼-refl a = ⊔-idemp a
@ -97,12 +123,6 @@ record IsFiniteHeightLattice {a} (A : Set a)
field field
fixedHeight : FixedHeight h fixedHeight : FixedHeight h
module _ {a b} {A : Set a} {B : Set b}
(_≼₁_ : A A Set a) (_≼₂_ : B B Set b) where
Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
module ChainMapping {a b} {A : Set a} {B : Set b} module ChainMapping {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_≈₂_ : B B Set b} {_≈₁_ : A A Set a} {_≈₂_ : B B Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B} {_⊔₁_ : A A A} {_⊔₂_ : B B B}

View File

@ -0,0 +1,26 @@
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Binary.Definitions using (Decidable)
module Lattice.Bundles.FiniteValueMap (A B : Set) (≡-dec-A : Decidable (_≡_ {_} {A})) where
open import Lattice
open import Data.List using (List)
open import Data.Nat using ()
open import Utils using (Unique)
module _ (fhB : FiniteHeightLattice B) where
open Lattice.FiniteHeightLattice fhB using () renaming
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
; height to height₂
; isLattice to isLattice₂
; fixedHeight to fixedHeight₂
)
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) where
import Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ as FVM
FiniteHeightType = FVM.FiniteMap
≈-dec = FVM.≈-dec ks ≈₂-dec
finiteHeightLattice = FVM.IterProdIsomorphism.finiteHeightLattice uks ≈₂-dec height₂ fixedHeight₂

View File

@ -0,0 +1,38 @@
open import Lattice
module Lattice.Bundles.IterProd {a} (A B : Set a) where
open import Data.Nat using ()
module _ (lA : Lattice A) (lB : Lattice B) where
open Lattice.Lattice lA using () renaming
( _≈_ to _≈₁_; _⊔_ to _⊔₁_; _⊓_ to _⊓₁_
; isLattice to isLattice₁
)
open Lattice.Lattice lB using () renaming
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
; isLattice to isLattice₂
)
module _ (k : ) where
open import Lattice.IterProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_ isLattice₁ isLattice₂ using (lattice) public
module _ (fhA : FiniteHeightLattice A) (fhB : FiniteHeightLattice B) where
open Lattice.FiniteHeightLattice fhA using () renaming
( _≈_ to _≈₁_; _⊔_ to _⊔₁_; _⊓_ to _⊓₁_
; height to height₁
; isLattice to isLattice₁
; fixedHeight to fixedHeight₁
)
open Lattice.FiniteHeightLattice fhB using () renaming
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
; height to height₂
; isLattice to isLattice₂
; fixedHeight to fixedHeight₂
)
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_) (k : ) where
import Lattice.IterProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_ isLattice₁ isLattice₂ as IP
finiteHeightLattice = IP.finiteHeightLattice k ≈₁-dec ≈₂-dec height₁ height₂ fixedHeight₁ fixedHeight₂

View File

@ -27,6 +27,7 @@ open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map
; ⊓-idemp to ⊓ᵐ-idemp ; ⊓-idemp to ⊓ᵐ-idemp
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ ; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ ; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
; ≈-dec to ≈ᵐ-dec
) )
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂) open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
open import Equivalence open import Equivalence
@ -38,6 +39,9 @@ module _ (ks : List A) where
_≈_ : FiniteMap FiniteMap Set (a ⊔ℓ b) _≈_ : FiniteMap FiniteMap Set (a ⊔ℓ b)
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂ _≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
≈-dec : IsDecidable _≈₂_ IsDecidable _≈_
≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂)
_⊔_ : FiniteMap FiniteMap FiniteMap _⊔_ : FiniteMap FiniteMap FiniteMap
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks) _⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)

View File

@ -271,4 +271,4 @@ module IterProdIsomorphism where
(to-preserves-≈ uks) (from-preserves-≈ {ks}) (to-preserves-≈ uks) (from-preserves-≈ {ks})
(to-⊔-distr uks) (from-⊔-distr {ks}) (to-⊔-distr uks) (from-⊔-distr {ks})
(from-to-inverseʳ uks) (from-to-inverseˡ uks) (from-to-inverseʳ uks) (from-to-inverseˡ uks)
using (isFiniteHeightLattice) public using (isFiniteHeightLattice; finiteHeightLattice) public

View File

@ -582,7 +582,7 @@ Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ e₂ } k∉ke₁ k∈ke₁e₂) ... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ e₂ } k∉ke₁ k∈ke₁e₂)
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ e₁ } k∉ke₂ k∈ke₁e₂) ... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ e₁ } k∉ke₂ k∈ke₁e₂)
module _ (≈₂-dec : (b₁ b₂ : B) Dec (b₁ ≈₂ b₂)) where module _ (≈₂-dec : IsDecidable _≈₂_) where
private module _ where private module _ where
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
extra : (k : A) k ∈k m₁ ¬ k ∈k m₂ SubsetInfo m₁ m₂ extra : (k : A) k ∈k m₁ ¬ k ∈k m₂ SubsetInfo m₁ m₂

69
Main.agda Normal file
View File

@ -0,0 +1,69 @@
module Main where
open import IO
open import Level using (0)
open import Data.Nat.Show using (show)
open import Data.List using (List; _∷_; []; foldr)
open import Data.String using (String; _++_) renaming (_≟_ to _≟ˢ_)
open import Data.Unit using (; tt) renaming (_≟_ to _≟ᵘ_)
open import Data.Product using (_,_; _×_; proj₁; proj₂)
open import Data.List.Relation.Unary.All using (_∷_; [])
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst; refl; trans)
open import Relation.Nullary using (¬_)
open import Utils using (Unique; push; empty)
xyzw : List String
xyzw = "x" "y" "z" "w" []
xyzw-Unique : Unique xyzw
xyzw-Unique = push ((λ ()) (λ ()) (λ ()) []) (push ((λ ()) (λ ()) []) (push ((λ ()) []) (push [] empty)))
open import Lattice using (IsFiniteHeightLattice; FiniteHeightLattice; Monotonic)
open import Lattice.AboveBelow _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵘ_ as AB using () renaming (≈-dec to ≈ᵘ-dec)
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵘ)
open import Lattice.Bundles.FiniteValueMap String AB.AboveBelow _≟ˢ_ renaming (finiteHeightLattice to finiteHeightLatticeᵐ; FiniteHeightType to FiniteHeightTypeᵐ; ≈-dec to ≈-dec)
fhlᵘ = finiteHeightLatticeᵘ (Data.Unit.tt)
FiniteHeightMap = FiniteHeightTypeᵐ fhlᵘ xyzw-Unique ≈ᵘ-dec
showAboveBelow : AB.AboveBelow String
showAboveBelow AB. = ""
showAboveBelow AB.⊥ = ""
showAboveBelow (AB.[_] tt) = "()"
showMap : {ks : List String} FiniteHeightMap ks String
showMap ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest x ++ "" ++ showAboveBelow y ++ ", " ++ rest) "" kvs ++ "}"
fhlⁱᵖ = finiteHeightLatticeᵐ fhlᵘ xyzw-Unique ≈ᵘ-dec
open FiniteHeightLattice fhlⁱᵖ using (_≈_; _⊔_; _⊓_; ⊔-idemp; _≼_; ≈-⊔-cong; ≈-refl; ≈-trans; ≈-sym; ⊔-assoc; ⊔-comm; ⊔-Monotonicˡ)
open import Relation.Binary.Reasoning.Base.Single _≈_ (λ {m} ≈-refl {m}) (λ {m₁} {m₂} {m₃} ≈-trans {m₁} {m₂} {m₃}) -- why am I having to eta-expand here?
smallestMap = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ)))
largestMap = proj₂ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ)))
dumb : FiniteHeightMap xyzw
dumb = ((("x" , AB.[_] tt) ("y" , AB.⊥) ("z" , AB.⊥) ("w" , AB.⊥) [] , xyzw-Unique) , refl)
dumbFunction : FiniteHeightMap xyzw FiniteHeightMap xyzw
dumbFunction = _⊔_ dumb
dumbFunction-Monotonic : Monotonic _≼_ _≼_ dumbFunction
dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂ = ⊔-Monotonicˡ dumb {m₁} {m₂} m₁≼m₂
open import Fixedpoint {0} {FiniteHeightMap xyzw} {8} {_≈_} {_⊔_} {_⊓_} (≈-dec fhlᵘ xyzw-Unique ≈ᵘ-dec) (FiniteHeightLattice.isFiniteHeightLattice fhlⁱᵖ) dumbFunction (λ {m₁} {m₂} m₁≼m₂ dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂)
-- module Fixedpoint {a} {A : Set a}
-- {h : }
-- {_≈_ : A → A → Set a}
-- {_⊔_ : A → A → A} {_⊓_ : A → A → A}
-- (≈-dec : IsDecidable _≈_)
-- (flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
-- (f : A → A)
-- (Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
-- (IsFiniteHeightLattice._≼_ flA) f) where
main = run {0} (putStrLn (showMap aᶠ))