Compare commits
5 Commits
8715d6d89c
...
ae09a27f64
Author | SHA1 | Date | |
---|---|---|---|
ae09a27f64 | |||
ca90f6509c | |||
29898e738b | |||
3a537f54ba | |||
52e7a7a208 |
|
@ -12,10 +12,12 @@ open import Function.Definitions using (Inverseˡ; Inverseʳ)
|
||||||
module Lattice.FiniteValueMap (A : Set) (B : Set)
|
module Lattice.FiniteValueMap (A : Set) (B : Set)
|
||||||
(_≈₂_ : B → B → Set)
|
(_≈₂_ : B → B → Set)
|
||||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||||
(≈-dec-A : Decidable (_≡_ {_} {A}))
|
(≡-dec-A : Decidable (_≡_ {_} {A}))
|
||||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||||
|
|
||||||
open import Data.List using (List; length; []; _∷_)
|
open import Data.List using (List; length; []; _∷_; map)
|
||||||
|
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
|
||||||
|
open import Data.Nat using (ℕ)
|
||||||
open import Data.Product using (Σ; proj₁; proj₂; _×_)
|
open import Data.Product using (Σ; proj₁; proj₂; _×_)
|
||||||
open import Data.Empty using (⊥-elim)
|
open import Data.Empty using (⊥-elim)
|
||||||
open import Utils using (Unique; push; empty; All¬-¬Any)
|
open import Utils using (Unique; push; empty; All¬-¬Any)
|
||||||
|
@ -25,32 +27,32 @@ open import Data.List.Relation.Unary.All using (All)
|
||||||
open import Data.List.Relation.Unary.Any using (Any; here; there)
|
open import Data.List.Relation.Unary.Any using (Any; here; there)
|
||||||
open import Relation.Nullary using (¬_)
|
open import Relation.Nullary using (¬_)
|
||||||
|
|
||||||
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; _∪_; `_; in₁; in₂; bothᵘ; single; ⊔-combines)
|
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; _∪_; `_; in₁; in₂; bothᵘ; single; ⊔-combines)
|
||||||
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
|
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB public
|
||||||
|
|
||||||
module IterProdIsomorphism where
|
module IterProdIsomorphism where
|
||||||
open import Data.Unit using (⊤; tt)
|
open import Data.Unit using (⊤; tt)
|
||||||
open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv)
|
open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv; fixedHeight to fixedHeightᵘ)
|
||||||
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd)
|
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd)
|
||||||
open IsLattice lB using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym)
|
open IsLattice lB using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; FixedHeight to FixedHeight₂)
|
||||||
|
|
||||||
from : ∀ {ks : List A} → FiniteMap ks → IterProd (length ks)
|
from : ∀ {ks : List A} → FiniteMap ks → IterProd (length ks)
|
||||||
from {[]} (([] , _) , _) = tt
|
from {[]} (([] , _) , _) = tt
|
||||||
from {k ∷ ks'} (((k' , v) ∷ kvs' , push _ uks') , refl) = (v , from ((kvs' , uks'), refl))
|
from {k ∷ ks'} (((k' , v) ∷ fm' , push _ uks') , refl) = (v , from ((fm' , uks'), refl))
|
||||||
|
|
||||||
to : ∀ {ks : List A} → Unique ks → IterProd (length ks) → FiniteMap ks
|
to : ∀ {ks : List A} → Unique ks → IterProd (length ks) → FiniteMap ks
|
||||||
to {[]} _ ⊤ = (([] , empty) , refl)
|
to {[]} _ ⊤ = (([] , empty) , refl)
|
||||||
to {k ∷ ks'} (push k≢ks' uks') (v , rest)
|
to {k ∷ ks'} (push k≢ks' uks') (v , rest) =
|
||||||
with to uks' rest
|
|
||||||
... | ((kvs' , ukvs') , kvs'≡ks') =
|
|
||||||
let
|
let
|
||||||
|
((fm' , ufm') , fm'≡ks') = to uks' rest
|
||||||
|
|
||||||
-- This would be easier if we pattern matched on the equiality proof
|
-- This would be easier if we pattern matched on the equiality proof
|
||||||
-- to get refl, but that makes it harder to reason about 'to' when
|
-- to get refl, but that makes it harder to reason about 'to' when
|
||||||
-- the arguments are not known to be refl.
|
-- the arguments are not known to be refl.
|
||||||
k≢kvs' = subst (λ ks → All (λ k' → ¬ k ≡ k') ks) (sym kvs'≡ks') k≢ks'
|
k≢fm' = subst (λ ks → All (λ k' → ¬ k ≡ k') ks) (sym fm'≡ks') k≢ks'
|
||||||
kvs≡ks = cong (k ∷_) kvs'≡ks'
|
kvs≡ks = cong (k ∷_) fm'≡ks'
|
||||||
in
|
in
|
||||||
(((k , v) ∷ kvs' , push k≢kvs' ukvs') , kvs≡ks)
|
(((k , v) ∷ fm' , push k≢fm' ufm') , kvs≡ks)
|
||||||
|
|
||||||
|
|
||||||
private
|
private
|
||||||
|
@ -76,10 +78,10 @@ module IterProdIsomorphism where
|
||||||
Inverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- from (to x) = x
|
Inverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- from (to x) = x
|
||||||
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0)
|
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0)
|
||||||
from-to-inverseˡ {k ∷ ks'} (push k≢ks' uks') (v , rest)
|
from-to-inverseˡ {k ∷ ks'} (push k≢ks' uks') (v , rest)
|
||||||
with ((kvs' , ukvs') , refl) ← to uks' rest in p rewrite sym p =
|
with ((fm' , ufm') , refl) ← to uks' rest in p rewrite sym p =
|
||||||
(IsLattice.≈-refl lB , from-to-inverseˡ {ks'} uks' rest)
|
(IsLattice.≈-refl lB , from-to-inverseˡ {ks'} uks' rest)
|
||||||
-- the rewrite here is needed because the IH is in terms of `to uks' rest`,
|
-- the rewrite here is needed because the IH is in terms of `to uks' rest`,
|
||||||
-- but we end up with the 'unpacked' form (kvs', ...). So, put it back
|
-- but we end up with the 'unpacked' form (fm', ...). So, put it back
|
||||||
-- in the 'packed' form after we've performed enough inspection
|
-- in the 'packed' form after we've performed enough inspection
|
||||||
-- to know we take the cons branch of `to`.
|
-- to know we take the cons branch of `to`.
|
||||||
|
|
||||||
|
@ -88,24 +90,24 @@ module IterProdIsomorphism where
|
||||||
from-to-inverseʳ : ∀ {ks : List A} (uks : Unique ks) →
|
from-to-inverseʳ : ∀ {ks : List A} (uks : Unique ks) →
|
||||||
Inverseʳ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- to (from x) = x
|
Inverseʳ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- to (from x) = x
|
||||||
from-to-inverseʳ {[]} _ (([] , empty) , kvs≡ks) rewrite kvs≡ks = ((λ k v ()) , (λ k v ()))
|
from-to-inverseʳ {[]} _ (([] , empty) , kvs≡ks) rewrite kvs≡ks = ((λ k v ()) , (λ k v ()))
|
||||||
from-to-inverseʳ {k ∷ ks'} uks@(push k≢ks'₁ uks'₁) fm₁@(m₁@((k , v) ∷ kvs'₁ , push k≢ks'₂ uks'₂) , refl)
|
from-to-inverseʳ {k ∷ ks'} uks@(push k≢ks'₁ uks'₁) fm₁@(m₁@((k , v) ∷ fm'₁ , push k≢ks'₂ uks'₂) , refl)
|
||||||
with to uks'₁ (from ((kvs'₁ , uks'₂) , refl)) | from-to-inverseʳ {ks'} uks'₁ ((kvs'₁ , uks'₂) , refl)
|
with to uks'₁ (from ((fm'₁ , uks'₂) , refl)) | from-to-inverseʳ {ks'} uks'₁ ((fm'₁ , uks'₂) , refl)
|
||||||
... | ((kvs'₂ , ukvs'₂) , _) | (kvs'₂⊆kvs'₁ , kvs'₁⊆kvs'₂) = (m₂⊆m₁ , m₁⊆m₂)
|
... | ((fm'₂ , ufm'₂) , _) | (fm'₂⊆fm'₁ , fm'₁⊆fm'₂) = (m₂⊆m₁ , m₁⊆m₂)
|
||||||
where
|
where
|
||||||
kvs₁ = (k , v) ∷ kvs'₁
|
kvs₁ = (k , v) ∷ fm'₁
|
||||||
kvs₂ = (k , v) ∷ kvs'₂
|
kvs₂ = (k , v) ∷ fm'₂
|
||||||
|
|
||||||
m₁⊆m₂ : subset-impl kvs₁ kvs₂
|
m₁⊆m₂ : subset-impl kvs₁ kvs₂
|
||||||
m₁⊆m₂ k' v' (here refl) = (v' , (IsLattice.≈-refl lB , here refl))
|
m₁⊆m₂ k' v' (here refl) = (v' , (IsLattice.≈-refl lB , here refl))
|
||||||
m₁⊆m₂ k' v' (there k',v'∈kvs'₁) =
|
m₁⊆m₂ k' v' (there k',v'∈fm'₁) =
|
||||||
let (v'' , (v'≈v'' , k',v''∈kvs'₂)) = kvs'₁⊆kvs'₂ k' v' k',v'∈kvs'₁
|
let (v'' , (v'≈v'' , k',v''∈fm'₂)) = fm'₁⊆fm'₂ k' v' k',v'∈fm'₁
|
||||||
in (v'' , (v'≈v'' , there k',v''∈kvs'₂))
|
in (v'' , (v'≈v'' , there k',v''∈fm'₂))
|
||||||
|
|
||||||
m₂⊆m₁ : subset-impl kvs₂ kvs₁
|
m₂⊆m₁ : subset-impl kvs₂ kvs₁
|
||||||
m₂⊆m₁ k' v' (here refl) = (v' , (IsLattice.≈-refl lB , here refl))
|
m₂⊆m₁ k' v' (here refl) = (v' , (IsLattice.≈-refl lB , here refl))
|
||||||
m₂⊆m₁ k' v' (there k',v'∈kvs'₂) =
|
m₂⊆m₁ k' v' (there k',v'∈fm'₂) =
|
||||||
let (v'' , (v'≈v'' , k',v''∈kvs'₁)) = kvs'₂⊆kvs'₁ k' v' k',v'∈kvs'₂
|
let (v'' , (v'≈v'' , k',v''∈fm'₁)) = fm'₂⊆fm'₁ k' v' k',v'∈fm'₂
|
||||||
in (v'' , (v'≈v'' , there k',v''∈kvs'₁))
|
in (v'' , (v'≈v'' , there k',v''∈fm'₁))
|
||||||
|
|
||||||
private
|
private
|
||||||
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → Σ B (λ v → (k , v) ∈ proj₁ fm)
|
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → Σ B (λ v → (k , v) ∈ proj₁ fm)
|
||||||
|
@ -119,40 +121,39 @@ module IterProdIsomorphism where
|
||||||
-- matching into a helper functions, and write solutions in terms
|
-- matching into a helper functions, and write solutions in terms
|
||||||
-- of that.
|
-- of that.
|
||||||
pop : ∀ {k : A} {ks : List A} → FiniteMap (k ∷ ks) → FiniteMap ks
|
pop : ∀ {k : A} {ks : List A} → FiniteMap (k ∷ ks) → FiniteMap ks
|
||||||
pop (((_ ∷ kvs') , push _ ukvs') , refl) = ((kvs' , ukvs') , refl)
|
pop (((_ ∷ fm') , push _ ufm') , refl) = ((fm' , ufm') , refl)
|
||||||
|
|
||||||
pop-≈ : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) → fm₁ ≈ᵐ fm₂ → pop fm₁ ≈ᵐ pop fm₂
|
pop-≈ : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) → fm₁ ≈ᵐ fm₂ → pop fm₁ ≈ᵐ pop fm₂
|
||||||
pop-≈ {k} {ks} fm₁ fm₂ (fm₁⊆fm₂ , fm₂⊆fm₁) = (narrow fm₁⊆fm₂ , narrow fm₂⊆fm₁)
|
pop-≈ {k} {ks} fm₁ fm₂ (fm₁⊆fm₂ , fm₂⊆fm₁) = (narrow fm₁⊆fm₂ , narrow fm₂⊆fm₁)
|
||||||
where
|
where
|
||||||
narrow₁ : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ fm₂
|
narrow₁ : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ fm₂
|
||||||
narrow₁ {(_ ∷ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁ = kvs₁⊆kvs₂ k' v' (there k',v'∈kvs'₁)
|
narrow₁ {(_ ∷ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈fm'₁ = kvs₁⊆kvs₂ k' v' (there k',v'∈fm'₁)
|
||||||
|
|
||||||
narrow₂ : ∀ {fm₁ : FiniteMap ks} {fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → fm₁ ⊆ᵐ pop fm₂
|
narrow₂ : ∀ {fm₁ : FiniteMap ks} {fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → fm₁ ⊆ᵐ pop fm₂
|
||||||
narrow₂ {fm₁} {fm₂ = (_ ∷ kvs'₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁
|
narrow₂ {fm₁} {fm₂ = (_ ∷ fm'₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
|
||||||
with kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁
|
with kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
|
||||||
... | (v'' , (v'≈v'' , here refl)) rewrite sym (proj₂ fm₁) = ⊥-elim (All¬-¬Any k≢ks (forget {m = proj₁ fm₁} k',v'∈kvs'₁))
|
... | (v'' , (v'≈v'' , here refl)) rewrite sym (proj₂ fm₁) = ⊥-elim (All¬-¬Any k≢ks (forget {m = proj₁ fm₁} k',v'∈fm'₁))
|
||||||
... | (v'' , (v'≈v'' , there k',v'∈kvs'₂)) = (v'' , (v'≈v'' , k',v'∈kvs'₂))
|
... | (v'' , (v'≈v'' , there k',v'∈fm'₂)) = (v'' , (v'≈v'' , k',v'∈fm'₂))
|
||||||
|
|
||||||
narrow : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ pop fm₂
|
narrow : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ pop fm₂
|
||||||
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
|
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
|
||||||
|
|
||||||
k,v∈pop⇒k,v∈ : ∀ {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ∷ ks)) → (k' , v) ∈ᵐ pop fm → (¬ k ≡ k' × ((k' , v) ∈ᵐ fm))
|
k,v∈pop⇒k,v∈ : ∀ {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ∷ ks)) → (k' , v) ∈ᵐ pop fm → (¬ k ≡ k' × ((k' , v) ∈ᵐ fm))
|
||||||
k,v∈pop⇒k,v∈ {k} {ks} {k'} {v} (m@((k , _) ∷ kvs' , push k≢ks uks') , refl) k',v∈fm =
|
k,v∈pop⇒k,v∈ {k} {ks} {k'} {v} (m@((k , _) ∷ fm' , push k≢ks uks') , refl) k',v∈fm =
|
||||||
((λ { refl → All¬-¬Any k≢ks (forget {m = (kvs' , uks')} k',v∈fm) }), there k',v∈fm)
|
((λ { refl → All¬-¬Any k≢ks (forget {m = (fm' , uks')} k',v∈fm) }), there k',v∈fm)
|
||||||
|
|
||||||
k,v∈⇒k,v∈pop : ∀ {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ∷ ks)) → ¬ k ≡ k' → (k' , v) ∈ᵐ fm → (k' , v) ∈ᵐ pop fm
|
k,v∈⇒k,v∈pop : ∀ {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ∷ ks)) → ¬ k ≡ k' → (k' , v) ∈ᵐ fm → (k' , v) ∈ᵐ pop fm
|
||||||
k,v∈⇒k,v∈pop {k} {ks} {k'} {v} (m@((k , _) ∷ kvs' , push k≢ks uks') , refl) k≢k' (here refl) = ⊥-elim (k≢k' refl)
|
k,v∈⇒k,v∈pop {k} {ks} {k'} {v} (m@((k , _) ∷ fm' , push k≢ks uks') , refl) k≢k' (here refl) = ⊥-elim (k≢k' refl)
|
||||||
k,v∈⇒k,v∈pop {k} {ks} {k'} {v} (m@((k , _) ∷ kvs' , push k≢ks uks') , refl) k≢k' (there k,v'∈kvs') = k,v'∈kvs'
|
k,v∈⇒k,v∈pop {k} {ks} {k'} {v} (m@((k , _) ∷ fm' , push k≢ks uks') , refl) k≢k' (there k,v'∈fm') = k,v'∈fm'
|
||||||
|
|
||||||
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : FiniteMap ks) (k : A) (v : B) → (k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) → Σ (B × B) (λ (v₁ , v₂) → ((v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B} → (k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) → Σ (B × B) (λ (v₁ , v₂) → ((v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
||||||
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) k v k,v∈fm₁fm₂
|
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
|
||||||
with Expr-Provenance k ((` m₁) ∪ (` m₂)) (forget {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂)
|
with Expr-Provenance k ((` m₁) ∪ (` m₂)) (forget {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂)
|
||||||
... | (_ , (in₁ (single k,v∈m₁) k∉km₂ , _)) with k∈km₁ ← (forget {m = m₁} k,v∈m₁) rewrite trans ks₁≡ks (sym ks₂≡ks) = ⊥-elim (k∉km₂ k∈km₁)
|
... | (_ , (in₁ (single k,v∈m₁) k∉km₂ , _)) with k∈km₁ ← (forget {m = m₁} k,v∈m₁) rewrite trans ks₁≡ks (sym ks₂≡ks) = ⊥-elim (k∉km₂ k∈km₁)
|
||||||
... | (_ , (in₂ k∉km₁ (single k,v∈m₂) , _)) with k∈km₂ ← (forget {m = m₂} k,v∈m₂) rewrite trans ks₁≡ks (sym ks₂≡ks) = ⊥-elim (k∉km₁ k∈km₂)
|
... | (_ , (in₂ k∉km₁ (single k,v∈m₂) , _)) with k∈km₂ ← (forget {m = m₂} k,v∈m₂) rewrite trans ks₁≡ks (sym ks₂≡ks) = ⊥-elim (k∉km₁ k∈km₂)
|
||||||
... | (v₁⊔v₂ , (bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) , k,v₁⊔v₂∈m₁m₂))
|
... | (v₁⊔v₂ , (bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) , k,v₁⊔v₂∈m₁m₂))
|
||||||
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂ = ((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂ = ((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||||
|
|
||||||
|
|
||||||
pop-⊔-distr : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) → pop (fm₁ ⊔ᵐ fm₂) ≈ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
pop-⊔-distr : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) → pop (fm₁ ⊔ᵐ fm₂) ≈ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
||||||
pop-⊔-distr {k} {ks} fm₁@(m₁ , _) fm₂@(m₂ , _) = (pfm₁fm₂⊆pfm₁pfm₂ , pfm₁pfm₂⊆pfm₁fm₂)
|
pop-⊔-distr {k} {ks} fm₁@(m₁ , _) fm₂@(m₂ , _) = (pfm₁fm₂⊆pfm₁pfm₂ , pfm₁pfm₂⊆pfm₁fm₂)
|
||||||
where
|
where
|
||||||
|
@ -160,51 +161,51 @@ module IterProdIsomorphism where
|
||||||
pfm₁fm₂⊆pfm₁pfm₂ : pop (fm₁ ⊔ᵐ fm₂) ⊆ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
pfm₁fm₂⊆pfm₁pfm₂ : pop (fm₁ ⊔ᵐ fm₂) ⊆ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
||||||
pfm₁fm₂⊆pfm₁pfm₂ k' v' k',v'∈pfm₁fm₂
|
pfm₁fm₂⊆pfm₁pfm₂ k' v' k',v'∈pfm₁fm₂
|
||||||
with (k≢k' , k',v'∈fm₁fm₂) ← k,v∈pop⇒k,v∈ (fm₁ ⊔ᵐ fm₂) k',v'∈pfm₁fm₂
|
with (k≢k' , k',v'∈fm₁fm₂) ← k,v∈pop⇒k,v∈ (fm₁ ⊔ᵐ fm₂) k',v'∈pfm₁fm₂
|
||||||
with ((v₁ , v₂) , (refl , (k,v₁∈fm₁ , k,v₂∈fm₂))) ← Provenance-union fm₁ fm₂ k' v' k',v'∈fm₁fm₂
|
with ((v₁ , v₂) , (refl , (k,v₁∈fm₁ , k,v₂∈fm₂))) ← Provenance-union fm₁ fm₂ k',v'∈fm₁fm₂
|
||||||
with k',v₁∈pfm₁ ← k,v∈⇒k,v∈pop fm₁ k≢k' k,v₁∈fm₁
|
with k',v₁∈pfm₁ ← k,v∈⇒k,v∈pop fm₁ k≢k' k,v₁∈fm₁
|
||||||
with k',v₂∈pfm₂ ← k,v∈⇒k,v∈pop fm₂ k≢k' k,v₂∈fm₂
|
with k',v₂∈pfm₂ ← k,v∈⇒k,v∈pop fm₂ k≢k' k,v₂∈fm₂
|
||||||
= (v₁ ⊔₂ v₂ , (IsLattice.≈-refl lB , ⊔-combines {m₁ = proj₁ (pop fm₁)} {m₂ = proj₁ (pop fm₂)} k',v₁∈pfm₁ k',v₂∈pfm₂))
|
= (v₁ ⊔₂ v₂ , (IsLattice.≈-refl lB , ⊔-combines {m₁ = proj₁ (pop fm₁)} {m₂ = proj₁ (pop fm₂)} k',v₁∈pfm₁ k',v₂∈pfm₂))
|
||||||
|
|
||||||
pfm₁pfm₂⊆pfm₁fm₂ : (pop fm₁ ⊔ᵐ pop fm₂) ⊆ᵐ pop (fm₁ ⊔ᵐ fm₂)
|
pfm₁pfm₂⊆pfm₁fm₂ : (pop fm₁ ⊔ᵐ pop fm₂) ⊆ᵐ pop (fm₁ ⊔ᵐ fm₂)
|
||||||
pfm₁pfm₂⊆pfm₁fm₂ k' v' k',v'∈pfm₁pfm₂
|
pfm₁pfm₂⊆pfm₁fm₂ k' v' k',v'∈pfm₁pfm₂
|
||||||
with ((v₁ , v₂) , (refl , (k,v₁∈pfm₁ , k,v₂∈pfm₂))) ← Provenance-union (pop fm₁) (pop fm₂) k' v' k',v'∈pfm₁pfm₂
|
with ((v₁ , v₂) , (refl , (k,v₁∈pfm₁ , k,v₂∈pfm₂))) ← Provenance-union (pop fm₁) (pop fm₂) k',v'∈pfm₁pfm₂
|
||||||
with (k≢k' , k',v₁∈fm₁) ← k,v∈pop⇒k,v∈ fm₁ k,v₁∈pfm₁
|
with (k≢k' , k',v₁∈fm₁) ← k,v∈pop⇒k,v∈ fm₁ k,v₁∈pfm₁
|
||||||
with (_ , k',v₂∈fm₂) ← k,v∈pop⇒k,v∈ fm₂ k,v₂∈pfm₂
|
with (_ , k',v₂∈fm₂) ← k,v∈pop⇒k,v∈ fm₂ k,v₂∈pfm₂
|
||||||
= (v₁ ⊔₂ v₂ , (IsLattice.≈-refl lB , k,v∈⇒k,v∈pop (fm₁ ⊔ᵐ fm₂) k≢k' (⊔-combines {m₁ = m₁} {m₂ = m₂} k',v₁∈fm₁ k',v₂∈fm₂)))
|
= (v₁ ⊔₂ v₂ , (IsLattice.≈-refl lB , k,v∈⇒k,v∈pop (fm₁ ⊔ᵐ fm₂) k≢k' (⊔-combines {m₁ = m₁} {m₂ = m₂} k',v₁∈fm₁ k',v₂∈fm₂)))
|
||||||
|
|
||||||
from-rest : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₂ (from fm) ≡ from (pop fm)
|
from-rest : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₂ (from fm) ≡ from (pop fm)
|
||||||
from-rest (((_ ∷ kvs') , push _ ukvs') , refl) = refl
|
from-rest (((_ ∷ fm') , push _ ufm') , refl) = refl
|
||||||
|
|
||||||
from-preserves-≈ : ∀ {ks : List A} → (fm₁ fm₂ : FiniteMap ks) → fm₁ ≈ᵐ fm₂ → (_≈ⁱᵖ_ {ks}) (from fm₁) (from fm₂)
|
from-preserves-≈ : ∀ {ks : List A} → {fm₁ fm₂ : FiniteMap ks} → fm₁ ≈ᵐ fm₂ → (_≈ⁱᵖ_ {ks}) (from fm₁) (from fm₂)
|
||||||
from-preserves-≈ {[]} (([] , _) , _) (([] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
from-preserves-≈ {[]} {([] , _) , _} {([] , _) , _} _ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
||||||
from-preserves-≈ {k ∷ ks'} fm₁@(m₁ , _) fm₂@(m₂ , _) fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
|
from-preserves-≈ {k ∷ ks'} {fm₁@(m₁ , _)} {fm₂@(m₂ , _)} fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
|
||||||
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
|
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
|
||||||
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl
|
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl
|
||||||
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
|
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
|
||||||
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
|
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
|
||||||
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
|
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
|
||||||
rewrite from-rest fm₁ rewrite from-rest fm₂
|
rewrite from-rest fm₁ rewrite from-rest fm₂
|
||||||
= (v₁≈v₁' , from-preserves-≈ (pop fm₁) (pop fm₂) (pop-≈ fm₁ fm₂ fm₁≈fm₂))
|
= (v₁≈v₁' , from-preserves-≈ {ks'} {pop fm₁} {pop fm₂} (pop-≈ fm₁ fm₂ fm₁≈fm₂))
|
||||||
|
|
||||||
to-preserves-≈ : ∀ {ks : List A} (uks : Unique ks) (ip₁ ip₂ : IterProd (length ks)) → _≈ⁱᵖ_ {ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
|
to-preserves-≈ : ∀ {ks : List A} (uks : Unique ks) {ip₁ ip₂ : IterProd (length ks)} → _≈ⁱᵖ_ {ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
|
||||||
to-preserves-≈ {[]} empty tt tt _ = ((λ k v ()), (λ k v ()))
|
to-preserves-≈ {[]} empty {tt} {tt} _ = ((λ k v ()), (λ k v ()))
|
||||||
to-preserves-≈ {k ∷ ks'} uks@(push k≢ks' uks') ip₁@(v₁ , rest₁) ip₂@(v₂ , rest₂) (v₁≈v₂ , rest₁≈rest₂) = (fm₁⊆fm₂ , fm₂⊆fm₁)
|
to-preserves-≈ {k ∷ ks'} uks@(push k≢ks' uks') {ip₁@(v₁ , rest₁)} {ip₂@(v₂ , rest₂)} (v₁≈v₂ , rest₁≈rest₂) = (fm₁⊆fm₂ , fm₂⊆fm₁)
|
||||||
where
|
where
|
||||||
fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂
|
fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂
|
||||||
fm₁⊆fm₂ k v k,v∈kvs₁
|
fm₁⊆fm₂ k v k,v∈kvs₁
|
||||||
with ((kvs'₁ , ukvs'₁) , kvs'₁≡ks') ← to uks' rest₁ in p₁
|
with ((fm'₁ , ufm'₁) , fm'₁≡ks') ← to uks' rest₁ in p₁
|
||||||
with ((kvs'₂ , ukvs'₂) , kvs'₂≡ks') ← to uks' rest₂ in p₂
|
with ((fm'₂ , ufm'₂) , fm'₂≡ks') ← to uks' rest₂ in p₂
|
||||||
with k,v∈kvs₁
|
with k,v∈kvs₁
|
||||||
... | here refl = (v₂ , (v₁≈v₂ , here refl))
|
... | here refl = (v₂ , (v₁≈v₂ , here refl))
|
||||||
... | there k,v∈kvs'₁ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₁)) = proj₁ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs'₁ in (v' , (v≈v' , there k,v'∈kvs₁))
|
... | there k,v∈fm'₁ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₁)) = proj₁ (to-preserves-≈ uks' {rest₁} {rest₂} rest₁≈rest₂) k v k,v∈fm'₁ in (v' , (v≈v' , there k,v'∈kvs₁))
|
||||||
|
|
||||||
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
|
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
|
||||||
fm₂⊆fm₁ k v k,v∈kvs₂
|
fm₂⊆fm₁ k v k,v∈kvs₂
|
||||||
with ((kvs'₁ , ukvs'₁) , kvs'₁≡ks') ← to uks' rest₁ in p₁
|
with ((fm'₁ , ufm'₁) , fm'₁≡ks') ← to uks' rest₁ in p₁
|
||||||
with ((kvs'₂ , ukvs'₂) , kvs'₂≡ks') ← to uks' rest₂ in p₂
|
with ((fm'₂ , ufm'₂) , fm'₂≡ks') ← to uks' rest₂ in p₂
|
||||||
with k,v∈kvs₂
|
with k,v∈kvs₂
|
||||||
... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl))
|
... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl))
|
||||||
... | there k,v∈kvs'₂ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs'₂ in (v' , (v≈v' , there k,v'∈kvs₂))
|
... | there k,v∈fm'₂ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' {rest₁} {rest₂} rest₁≈rest₂) k v k,v∈fm'₂ in (v' , (v≈v' , there k,v'∈kvs₂))
|
||||||
|
|
||||||
from-⊔-distr : ∀ {ks : List A} → (fm₁ fm₂ : FiniteMap ks) → _≈ⁱᵖ_ {ks} (from (fm₁ ⊔ᵐ fm₂)) (_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂))
|
from-⊔-distr : ∀ {ks : List A} → (fm₁ fm₂ : FiniteMap ks) → _≈ⁱᵖ_ {ks} (from (fm₁ ⊔ᵐ fm₂)) (_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂))
|
||||||
from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
||||||
|
@ -220,5 +221,54 @@ module IterProdIsomorphism where
|
||||||
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
|
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
|
||||||
rewrite from-rest (fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
|
rewrite from-rest (fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
|
||||||
= ( IsLattice.≈-refl lB
|
= ( IsLattice.≈-refl lB
|
||||||
, IsEquivalence.≈-trans (IP.≈-equiv (length ks)) (from-preserves-≈ (pop (fm₁ ⊔ᵐ fm₂)) (pop fm₁ ⊔ᵐ pop fm₂) (pop-⊔-distr fm₁ fm₂)) ((from-⊔-distr (pop fm₁) (pop fm₂)))
|
, IsEquivalence.≈-trans (IP.≈-equiv (length ks)) (from-preserves-≈ {_} {pop (fm₁ ⊔ᵐ fm₂)} {pop fm₁ ⊔ᵐ pop fm₂} (pop-⊔-distr fm₁ fm₂)) ((from-⊔-distr (pop fm₁) (pop fm₂)))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
to-⊔-distr : ∀ {ks : List A} (uks : Unique ks) → (ip₁ ip₂ : IterProd (length ks)) → to uks (_⊔ⁱᵖ_ {ks} ip₁ ip₂) ≈ᵐ (to uks ip₁ ⊔ᵐ to uks ip₂)
|
||||||
|
to-⊔-distr {[]} empty tt tt = ((λ k v ()), (λ k v ()))
|
||||||
|
to-⊔-distr {ks@(k ∷ ks')} uks@(push k≢ks' uks') ip₁@(v₁ , rest₁) ip₂@(v₂ , rest₂) = (fm⊆fm₁fm₂ , fm₁fm₂⊆fm)
|
||||||
|
where
|
||||||
|
fm₁ = to uks ip₁
|
||||||
|
fm₁' = to uks' rest₁
|
||||||
|
fm₂ = to uks ip₂
|
||||||
|
fm₂' = to uks' rest₂
|
||||||
|
fm = to uks (_⊔ⁱᵖ_ {k ∷ ks'} ip₁ ip₂)
|
||||||
|
|
||||||
|
fm⊆fm₁fm₂ : fm ⊆ᵐ (fm₁ ⊔ᵐ fm₂)
|
||||||
|
fm⊆fm₁fm₂ k v (here refl) =
|
||||||
|
(v₁ ⊔₂ v₂
|
||||||
|
, (IsLattice.≈-refl lB
|
||||||
|
, ⊔-combines {k} {v₁} {v₂} {proj₁ fm₁} {proj₁ fm₂} (here refl) (here refl)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
fm⊆fm₁fm₂ k' v (there k',v∈fm')
|
||||||
|
with (fm'⊆fm'₁fm'₂ , _) ← to-⊔-distr uks' rest₁ rest₂
|
||||||
|
with (v' , (v₁⊔v₂≈v' , k',v'∈fm'₁fm'₂)) ← fm'⊆fm'₁fm'₂ k' v k',v∈fm'
|
||||||
|
with (_ , (refl , (v₁∈fm'₁ , v₂∈fm'₂))) ← Provenance-union fm₁' fm₂' k',v'∈fm'₁fm'₂ =
|
||||||
|
(v' , (v₁⊔v₂≈v' , ⊔-combines {m₁ = proj₁ fm₁} {m₂ = proj₁ fm₂} (there v₁∈fm'₁) (there v₂∈fm'₂)))
|
||||||
|
|
||||||
|
fm₁fm₂⊆fm : (fm₁ ⊔ᵐ fm₂) ⊆ᵐ fm
|
||||||
|
fm₁fm₂⊆fm k' v k',v∈fm₁fm₂
|
||||||
|
with (_ , fm'₁fm'₂⊆fm') ← to-⊔-distr uks' rest₁ rest₂
|
||||||
|
with (_ , (refl , (v₁∈fm₁ , v₂∈fm₂))) ← Provenance-union fm₁ fm₂ k',v∈fm₁fm₂
|
||||||
|
with v₁∈fm₁ | v₂∈fm₂
|
||||||
|
... | here refl | here refl = (v , (IsLattice.≈-refl lB , here refl))
|
||||||
|
... | here refl | there k',v₂∈fm₂' = ⊥-elim (All¬-¬Any k≢ks' (subst (λ list → k' ∈ˡ list) (proj₂ fm₂') (forget {m = proj₁ fm₂'} k',v₂∈fm₂')))
|
||||||
|
... | there k',v₁∈fm₁' | here refl = ⊥-elim (All¬-¬Any k≢ks' (subst (λ list → k' ∈ˡ list) (proj₂ fm₁') (forget {m = proj₁ fm₁'} k',v₁∈fm₁')))
|
||||||
|
... | there k',v₁∈fm₁' | there k',v₂∈fm₂' =
|
||||||
|
let
|
||||||
|
k',v₁v₂∈fm₁'fm₂' = ⊔-combines {m₁ = proj₁ fm₁'} {m₂ = proj₁ fm₂'} k',v₁∈fm₁' k',v₂∈fm₂'
|
||||||
|
(v' , (v₁⊔v₂≈v' , v'∈fm')) = fm'₁fm'₂⊆fm' _ _ k',v₁v₂∈fm₁'fm₂'
|
||||||
|
in
|
||||||
|
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
|
||||||
|
|
||||||
|
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) (h₂ : ℕ) (fhB : FixedHeight₂ h₂) where
|
||||||
|
import Isomorphism
|
||||||
|
open Isomorphism.TransportFiniteHeight
|
||||||
|
(IP.isFiniteHeightLattice (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) (isLattice ks)
|
||||||
|
{f = to uks} {g = from {ks}}
|
||||||
|
(to-preserves-≈ uks) (from-preserves-≈ {ks})
|
||||||
|
(to-⊔-distr uks) (from-⊔-distr {ks})
|
||||||
|
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
|
||||||
|
using (isFiniteHeightLattice) public
|
||||||
|
|
|
@ -23,94 +23,97 @@ IterProd k = iterate k (λ t → A × t) B
|
||||||
|
|
||||||
-- To make iteration more convenient, package the definitions in Lattice
|
-- To make iteration more convenient, package the definitions in Lattice
|
||||||
-- records, perform the recursion, and unpackage.
|
-- records, perform the recursion, and unpackage.
|
||||||
|
--
|
||||||
|
|
||||||
module _ where
|
-- If we prove isLattice and isFiniteHeightLattice by induction separately,
|
||||||
lattice : ∀ {k : ℕ} → Lattice (IterProd k)
|
-- we lose the connection between the operations (which should be the same)
|
||||||
lattice {0} = record
|
-- that are built up by the two iterations. So, do everything in one iteration.
|
||||||
{ _≈_ = _≈₂_
|
-- This requires some odd code.
|
||||||
; _⊔_ = _⊔₂_
|
|
||||||
; _⊓_ = _⊓₂_
|
|
||||||
; isLattice = lB
|
|
||||||
}
|
|
||||||
lattice {suc k'} = record
|
|
||||||
{ _≈_ = _≈_
|
|
||||||
; _⊔_ = _⊔_
|
|
||||||
; _⊓_ = _⊓_
|
|
||||||
; isLattice = isLattice
|
|
||||||
}
|
|
||||||
where
|
|
||||||
Right : Lattice (IterProd k')
|
|
||||||
Right = lattice {k'}
|
|
||||||
|
|
||||||
open import Lattice.Prod
|
private
|
||||||
_≈₁_ (Lattice._≈_ Right)
|
record RequiredForFixedHeight : Set (lsuc a) where
|
||||||
_⊔₁_ (Lattice._⊔_ Right)
|
field
|
||||||
_⊓₁_ (Lattice._⊓_ Right)
|
≈₁-dec : IsDecidable _≈₁_
|
||||||
lA (Lattice.isLattice Right)
|
≈₂-dec : IsDecidable _≈₂_
|
||||||
|
h₁ h₂ : ℕ
|
||||||
|
fhA : FixedHeight₁ h₁
|
||||||
|
fhB : FixedHeight₂ h₂
|
||||||
|
|
||||||
module _ (k : ℕ) where
|
record IsFiniteHeightAndDecEq {A : Set a} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) : Set (lsuc a) where
|
||||||
open Lattice.Lattice (lattice {k}) public
|
|
||||||
|
|
||||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
|
||||||
(h₁ h₂ : ℕ)
|
|
||||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
|
||||||
|
|
||||||
private module _ where
|
|
||||||
record FiniteHeightAndDecEq (A : Set a) : Set (lsuc a) where
|
|
||||||
field
|
field
|
||||||
height : ℕ
|
height : ℕ
|
||||||
|
fixedHeight : IsLattice.FixedHeight isLattice height
|
||||||
|
≈-dec : IsDecidable _≈_
|
||||||
|
|
||||||
|
record Everything (A : Set a) : Set (lsuc a) where
|
||||||
|
field
|
||||||
_≈_ : A → A → Set a
|
_≈_ : A → A → Set a
|
||||||
_⊔_ : A → A → A
|
_⊔_ : A → A → A
|
||||||
_⊓_ : A → A → A
|
_⊓_ : A → A → A
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||||
≈-dec : IsDecidable _≈_
|
isFiniteHeightIfSupported : RequiredForFixedHeight → IsFiniteHeightAndDecEq isLattice
|
||||||
|
|
||||||
open IsFiniteHeightLattice isFiniteHeightLattice public
|
everything : ∀ (k : ℕ) → Everything (IterProd k)
|
||||||
|
everything 0 = record
|
||||||
finiteHeightAndDec : ∀ {k : ℕ} → FiniteHeightAndDecEq (IterProd k)
|
{ _≈_ = _≈₂_
|
||||||
finiteHeightAndDec {0} = record
|
|
||||||
{ height = h₂
|
|
||||||
; _≈_ = _≈₂_
|
|
||||||
; _⊔_ = _⊔₂_
|
; _⊔_ = _⊔₂_
|
||||||
; _⊓_ = _⊓₂_
|
; _⊓_ = _⊓₂_
|
||||||
; isFiniteHeightLattice = record
|
; isLattice = lB
|
||||||
{ isLattice = lB
|
; isFiniteHeightIfSupported = λ req → record
|
||||||
; fixedHeight = fhB
|
{ height = RequiredForFixedHeight.h₂ req
|
||||||
|
; fixedHeight = RequiredForFixedHeight.fhB req
|
||||||
|
; ≈-dec = RequiredForFixedHeight.≈₂-dec req
|
||||||
}
|
}
|
||||||
; ≈-dec = ≈₂-dec
|
|
||||||
}
|
}
|
||||||
finiteHeightAndDec {suc k'} = record
|
everything (suc k') = record
|
||||||
{ height = h₁ + FiniteHeightAndDecEq.height Right
|
{ _≈_ = P._≈_
|
||||||
; _≈_ = P._≈_
|
|
||||||
; _⊔_ = P._⊔_
|
; _⊔_ = P._⊔_
|
||||||
; _⊓_ = P._⊓_
|
; _⊓_ = P._⊓_
|
||||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
; isLattice = P.isLattice
|
||||||
≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
; isFiniteHeightIfSupported = λ req →
|
||||||
h₁ (FiniteHeightAndDecEq.height Right)
|
let
|
||||||
fhA (IsFiniteHeightLattice.fixedHeight (FiniteHeightAndDecEq.isFiniteHeightLattice Right))
|
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
|
||||||
; ≈-dec = ≈-dec ≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
in
|
||||||
|
record
|
||||||
|
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightAndDecEq.height fhlRest
|
||||||
|
; fixedHeight =
|
||||||
|
P.fixedHeight
|
||||||
|
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
|
||||||
|
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightAndDecEq.height fhlRest)
|
||||||
|
(RequiredForFixedHeight.fhA req) (IsFiniteHeightAndDecEq.fixedHeight fhlRest)
|
||||||
|
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
Right = finiteHeightAndDec {k'}
|
everythingRest = everything k'
|
||||||
|
|
||||||
open import Lattice.Prod
|
import Lattice.Prod
|
||||||
_≈₁_ (FiniteHeightAndDecEq._≈_ Right)
|
_≈₁_ (Everything._≈_ everythingRest)
|
||||||
_⊔₁_ (FiniteHeightAndDecEq._⊔_ Right)
|
_⊔₁_ (Everything._⊔_ everythingRest)
|
||||||
_⊓₁_ (FiniteHeightAndDecEq._⊓_ Right)
|
_⊓₁_ (Everything._⊓_ everythingRest)
|
||||||
lA (FiniteHeightAndDecEq.isLattice Right) as P
|
lA (Everything.isLattice everythingRest) as P
|
||||||
|
|
||||||
module _ (k : ℕ) where
|
module _ (k : ℕ) where
|
||||||
open FiniteHeightAndDecEq (finiteHeightAndDec {k}) using (isFiniteHeightLattice) public
|
open Everything (everything k) using (_≈_; _⊔_; _⊓_; isLattice) public
|
||||||
|
open Lattice.IsLattice isLattice public
|
||||||
|
|
||||||
|
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||||
|
(h₁ h₂ : ℕ)
|
||||||
|
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
||||||
|
|
||||||
private
|
private
|
||||||
FHD = finiteHeightAndDec {k}
|
required : RequiredForFixedHeight
|
||||||
|
required = record
|
||||||
finiteHeightLattice : FiniteHeightLattice (IterProd k)
|
{ ≈₁-dec = ≈₁-dec
|
||||||
finiteHeightLattice = record
|
; ≈₂-dec = ≈₂-dec
|
||||||
{ height = FiniteHeightAndDecEq.height FHD
|
; h₁ = h₁
|
||||||
; _≈_ = FiniteHeightAndDecEq._≈_ FHD
|
; h₂ = h₂
|
||||||
; _⊔_ = FiniteHeightAndDecEq._⊔_ FHD
|
; fhA = fhA
|
||||||
; _⊓_ = FiniteHeightAndDecEq._⊓_ FHD
|
; fhB = fhB
|
||||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
}
|
||||||
|
|
||||||
|
isFiniteHeightLattice = record
|
||||||
|
{ isLattice = isLattice
|
||||||
|
; fixedHeight = IsFiniteHeightAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||||
}
|
}
|
||||||
|
|
|
@ -171,10 +171,8 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||||
, ≤-stepsˡ 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
, ≤-stepsˡ 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||||||
))
|
))
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||||
isFiniteHeightLattice = record
|
fixedHeight =
|
||||||
{ isLattice = isLattice
|
|
||||||
; fixedHeight =
|
|
||||||
( ( ((amin , bmin) , (amax , bmax))
|
( ( ((amin , bmin) , (amax , bmax))
|
||||||
, concat
|
, concat
|
||||||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
|
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
|
||||||
|
@ -183,6 +181,11 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||||
, λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
, λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))
|
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||||
|
isFiniteHeightLattice = record
|
||||||
|
{ isLattice = isLattice
|
||||||
|
; fixedHeight = fixedHeight
|
||||||
}
|
}
|
||||||
|
|
||||||
finiteHeightLattice : FiniteHeightLattice (A × B)
|
finiteHeightLattice : FiniteHeightLattice (A × B)
|
||||||
|
|
|
@ -107,10 +107,13 @@ private
|
||||||
isLongest {tt} {tt} (step (tt⊔tt≈tt , tt̷≈tt) _ _) = ⊥-elim (tt̷≈tt refl)
|
isLongest {tt} {tt} (step (tt⊔tt≈tt , tt̷≈tt) _ _) = ⊥-elim (tt̷≈tt refl)
|
||||||
isLongest (done _) = z≤n
|
isLongest (done _) = z≤n
|
||||||
|
|
||||||
|
fixedHeight : IsLattice.FixedHeight isLattice 0
|
||||||
|
fixedHeight = (((tt , tt) , longestChain) , isLongest)
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
||||||
isFiniteHeightLattice = record
|
isFiniteHeightLattice = record
|
||||||
{ isLattice = isLattice
|
{ isLattice = isLattice
|
||||||
; fixedHeight = (((tt , tt) , longestChain) , isLongest)
|
; fixedHeight = fixedHeight
|
||||||
}
|
}
|
||||||
|
|
||||||
finiteHeightLattice : FiniteHeightLattice ⊤
|
finiteHeightLattice : FiniteHeightLattice ⊤
|
||||||
|
|
|
@ -32,6 +32,10 @@ All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x
|
||||||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
||||||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
||||||
|
|
||||||
|
All-single : ∀ {p c} {C : Set c} {P : C → Set p} {c : C} {l : List C} → All P l → c ∈ l → P c
|
||||||
|
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (here refl) = p
|
||||||
|
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (there c∈xs) = All-single ps c∈xs
|
||||||
|
|
||||||
All-x∈xs : ∀ {a} {A : Set a} (xs : List A) → All (λ x → x ∈ xs) xs
|
All-x∈xs : ∀ {a} {A : Set a} (xs : List A) → All (λ x → x ∈ xs) xs
|
||||||
All-x∈xs [] = []
|
All-x∈xs [] = []
|
||||||
All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
|
All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
|
||||||
|
|
Loading…
Reference in New Issue
Block a user