@@ -12,10 +12,12 @@ open import Function.Definitions using (Inverseˡ; Inverseʳ)
module Lattice.FiniteValueMap ( A : Set ) ( B : Set )
( _≈₂_ : B → B → Set )
( _⊔₂_ : B → B → B) ( _⊓₂_ : B → B → B)
( ≈ -dec-A : Decidable ( _≡_ { _} { A} ) )
( ≡ -dec-A : Decidable ( _≡_ { _} { A} ) )
( lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Data.List using ( List; length; []; _∷_)
open import Data.List using ( List; length; []; _∷_; map )
open import Data.List.Membership.Propositional using ( ) renaming ( _∈_ to _∈ˡ_)
open import Data.Nat using ( ℕ )
open import Data.Product using ( Σ; proj₁; proj₂; _× _)
open import Data.Empty using ( ⊥-elim)
open import Utils using ( Unique; push; empty; All¬-¬Any)
@@ -25,32 +27,32 @@ open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.Any using ( Any; here; there)
open import Relation.Nullary using ( ¬_)
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈ -dec-A lB using ( subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; _∪ _; `_; in ₁; in ₂; bothᵘ; single; ⊔-combines)
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈ -dec-A lB public
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡ -dec-A lB using ( subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; _∪ _; `_; in ₁; in ₂; bothᵘ; single; ⊔-combines)
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡ -dec-A lB public
module IterProdIsomorphism where
open import Data.Unit using ( ⊤ ; tt)
open import Lattice.Unit using ( ) renaming ( _≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv)
open import Lattice.Unit using ( ) renaming ( _≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv; fixedHeight to fixedHeightᵘ )
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using ( IterProd)
open IsLattice lB using ( ) renaming ( ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym)
open IsLattice lB using ( ) renaming ( ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; FixedHeight to FixedHeight₂ )
from : ∀ { ks : List A} → FiniteMap ks → IterProd ( length ks)
from { []} ( ( [] , _) , _) = tt
from { k ∷ ks'} ( ( ( k' , v) ∷ kvs ' , push _ uks') , refl) = ( v , from ( ( kvs ' , uks') , refl) )
from { k ∷ ks'} ( ( ( k' , v) ∷ fm ' , push _ uks') , refl) = ( v , from ( ( fm ' , uks') , refl) )
to : ∀ { ks : List A} → Unique ks → IterProd ( length ks) → FiniteMap ks
to { []} _ ⊤ = ( ( [] , empty) , refl)
to { k ∷ ks'} ( push k≢ks' uks') ( v , rest)
with to uks' rest
... | ( ( kvs' , ukvs') , kvs'≡ks') =
to { k ∷ ks'} ( push k≢ks' uks') ( v , rest) =
let
( ( fm' , ufm') , fm'≡ks') = to uks' rest
-- This would be easier if we pattern matched on the equiality proof
-- to get refl, but that makes it harder to reason about 'to' when
-- the arguments are not known to be refl.
k≢kvs ' = subst ( λ ks → All ( λ k' → ¬ k ≡ k') ks) ( sym kvs '≡ks') k≢ks'
kvs≡ks = cong ( k ∷_) kvs '≡ks'
k≢fm ' = subst ( λ ks → All ( λ k' → ¬ k ≡ k') ks) ( sym fm '≡ks') k≢ks'
kvs≡ks = cong ( k ∷_) fm '≡ks'
in
( ( ( k , v) ∷ kvs ' , push k≢kvs ' ukvs ') , kvs≡ks)
( ( ( k , v) ∷ fm ' , push k≢fm ' ufm ') , kvs≡ks)
private
@@ -76,10 +78,10 @@ module IterProdIsomorphism where
Inverseˡ ( _≈ᵐ_ { ks} ) ( _≈ⁱᵖ_ { ks} ) ( from { ks} ) ( to { ks} uks) -- from (to x) = x
from-to-inverseˡ { []} _ _ = IsEquivalence.≈-refl ( IP.≈-equiv 0 )
from-to-inverseˡ { k ∷ ks'} ( push k≢ks' uks') ( v , rest)
with ( ( kvs ' , ukvs ') , refl) ← to uks' rest in p rewrite sym p =
with ( ( fm ' , ufm ') , refl) ← to uks' rest in p rewrite sym p =
( IsLattice.≈-refl lB , from-to-inverseˡ { ks'} uks' rest)
-- the rewrite here is needed because the IH is in terms of `to uks' rest`,
-- but we end up with the 'unpacked' form (kvs ', ...). So, put it back
-- but we end up with the 'unpacked' form (fm ', ...). So, put it back
-- in the 'packed' form after we've performed enough inspection
-- to know we take the cons branch of `to`.
@@ -88,24 +90,24 @@ module IterProdIsomorphism where
from-to-inverseʳ : ∀ { ks : List A} ( uks : Unique ks) →
Inverseʳ ( _≈ᵐ_ { ks} ) ( _≈ⁱᵖ_ { ks} ) ( from { ks} ) ( to { ks} uks) -- to (from x) = x
from-to-inverseʳ { []} _ ( ( [] , empty) , kvs≡ks) rewrite kvs≡ks = ( ( λ k v ( ) ) , ( λ k v ( ) ) )
from-to-inverseʳ { k ∷ ks'} uks@( push k≢ks'₁ uks'₁) fm₁@( m₁@( ( k , v) ∷ kvs '₁ , push k≢ks'₂ uks'₂) , refl)
with to uks'₁ ( from ( ( kvs '₁ , uks'₂) , refl) ) | from-to-inverseʳ { ks'} uks'₁ ( ( kvs '₁ , uks'₂) , refl)
... | ( ( kvs '₂ , ukvs '₂) , _) | ( kvs'₂⊆kvs'₁ , kvs'₁⊆kvs '₂) = ( m₂⊆m₁ , m₁⊆m₂)
from-to-inverseʳ { k ∷ ks'} uks@( push k≢ks'₁ uks'₁) fm₁@( m₁@( ( k , v) ∷ fm '₁ , push k≢ks'₂ uks'₂) , refl)
with to uks'₁ ( from ( ( fm '₁ , uks'₂) , refl) ) | from-to-inverseʳ { ks'} uks'₁ ( ( fm '₁ , uks'₂) , refl)
... | ( ( fm '₂ , ufm '₂) , _) | ( fm'₂⊆fm'₁ , fm'₁⊆fm '₂) = ( m₂⊆m₁ , m₁⊆m₂)
where
kvs₁ = ( k , v) ∷ kvs '₁
kvs₂ = ( k , v) ∷ kvs '₂
kvs₁ = ( k , v) ∷ fm '₁
kvs₂ = ( k , v) ∷ fm '₂
m₁⊆m₂ : subset-impl kvs₁ kvs₂
m₁⊆m₂ k' v' ( here refl) = ( v' , ( IsLattice.≈-refl lB , here refl) )
m₁⊆m₂ k' v' ( there k',v'∈kvs '₁) =
let ( v'' , ( v'≈v'' , k',v''∈kvs '₂) ) = kvs'₁⊆kvs '₂ k' v' k',v'∈kvs '₁
in ( v'' , ( v'≈v'' , there k',v''∈kvs '₂) )
m₁⊆m₂ k' v' ( there k',v'∈fm '₁) =
let ( v'' , ( v'≈v'' , k',v''∈fm '₂) ) = fm'₁⊆fm '₂ k' v' k',v'∈fm '₁
in ( v'' , ( v'≈v'' , there k',v''∈fm '₂) )
m₂⊆m₁ : subset-impl kvs₂ kvs₁
m₂⊆m₁ k' v' ( here refl) = ( v' , ( IsLattice.≈-refl lB , here refl) )
m₂⊆m₁ k' v' ( there k',v'∈kvs '₂) =
let ( v'' , ( v'≈v'' , k',v''∈kvs '₁) ) = kvs'₂⊆kvs '₁ k' v' k',v'∈kvs '₂
in ( v'' , ( v'≈v'' , there k',v''∈kvs '₁) )
m₂⊆m₁ k' v' ( there k',v'∈fm '₂) =
let ( v'' , ( v'≈v'' , k',v''∈fm '₁) ) = fm'₂⊆fm '₁ k' v' k',v'∈fm '₂
in ( v'' , ( v'≈v'' , there k',v''∈fm '₁) )
private
first-key-in-map : ∀ { k : A} { ks : List A} ( fm : FiniteMap ( k ∷ ks) ) → Σ B ( λ v → ( k , v) ∈ proj₁ fm)
@@ -119,40 +121,39 @@ module IterProdIsomorphism where
-- matching into a helper functions, and write solutions in terms
-- of that.
pop : ∀ { k : A} { ks : List A} → FiniteMap ( k ∷ ks) → FiniteMap ks
pop ( ( ( _ ∷ kvs ') , push _ ukvs ') , refl) = ( ( kvs ' , ukvs ') , refl)
pop ( ( ( _ ∷ fm ') , push _ ufm ') , refl) = ( ( fm ' , ufm ') , refl)
pop-≈ : ∀ { k : A} { ks : List A} ( fm₁ fm₂ : FiniteMap ( k ∷ ks) ) → fm₁ ≈ᵐ fm₂ → pop fm₁ ≈ᵐ pop fm₂
pop-≈ { k} { ks} fm₁ fm₂ ( fm₁⊆fm₂ , fm₂⊆fm₁) = ( narrow fm₁⊆fm₂ , narrow fm₂⊆fm₁)
where
narrow₁ : ∀ { fm₁ fm₂ : FiniteMap ( k ∷ ks) } → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ fm₂
narrow₁ { ( _ ∷ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs '₁ = kvs₁⊆kvs₂ k' v' ( there k',v'∈kvs '₁)
narrow₁ { ( _ ∷ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈fm '₁ = kvs₁⊆kvs₂ k' v' ( there k',v'∈fm '₁)
narrow₂ : ∀ { fm₁ : FiniteMap ks} { fm₂ : FiniteMap ( k ∷ ks) } → fm₁ ⊆ᵐ fm₂ → fm₁ ⊆ᵐ pop fm₂
narrow₂ { fm₁} { fm₂ = ( _ ∷ kvs '₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs '₁
with kvs₁⊆kvs₂ k' v' k',v'∈kvs '₁
... | ( v'' , ( v'≈v'' , here refl) ) rewrite sym ( proj₂ fm₁) = ⊥-elim ( All¬-¬Any k≢ks ( forget { m = proj₁ fm₁} k',v'∈kvs '₁) )
... | ( v'' , ( v'≈v'' , there k',v'∈kvs '₂) ) = ( v'' , ( v'≈v'' , k',v'∈kvs '₂) )
narrow₂ { fm₁} { fm₂ = ( _ ∷ fm '₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈fm '₁
with kvs₁⊆kvs₂ k' v' k',v'∈fm '₁
... | ( v'' , ( v'≈v'' , here refl) ) rewrite sym ( proj₂ fm₁) = ⊥-elim ( All¬-¬Any k≢ks ( forget { m = proj₁ fm₁} k',v'∈fm '₁) )
... | ( v'' , ( v'≈v'' , there k',v'∈fm '₂) ) = ( v'' , ( v'≈v'' , k',v'∈fm '₂) )
narrow : ∀ { fm₁ fm₂ : FiniteMap ( k ∷ ks) } → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ pop fm₂
narrow { fm₁} { fm₂} x = narrow₂ { pop fm₁} ( narrow₁ { fm₂ = fm₂} x)
k,v∈pop⇒k,v∈ : ∀ { k : A} { ks : List A} { k' : A} { v : B} ( fm : FiniteMap ( k ∷ ks) ) → ( k' , v) ∈ᵐ pop fm → ( ¬ k ≡ k' × ( ( k' , v) ∈ᵐ fm) )
k,v∈pop⇒k,v∈ { k} { ks} { k'} { v} ( m@( ( k , _) ∷ kvs ' , push k≢ks uks') , refl) k',v∈fm =
( ( λ { refl → All¬-¬Any k≢ks ( forget { m = ( kvs ' , uks') } k',v∈fm) } ) , there k',v∈fm)
k,v∈pop⇒k,v∈ { k} { ks} { k'} { v} ( m@( ( k , _) ∷ fm ' , push k≢ks uks') , refl) k',v∈fm =
( ( λ { refl → All¬-¬Any k≢ks ( forget { m = ( fm ' , uks') } k',v∈fm) } ) , there k',v∈fm)
k,v∈⇒k,v∈pop : ∀ { k : A} { ks : List A} { k' : A} { v : B} ( fm : FiniteMap ( k ∷ ks) ) → ¬ k ≡ k' → ( k' , v) ∈ᵐ fm → ( k' , v) ∈ᵐ pop fm
k,v∈⇒k,v∈pop { k} { ks} { k'} { v} ( m@( ( k , _) ∷ kvs ' , push k≢ks uks') , refl) k≢k' ( here refl) = ⊥-elim ( k≢k' refl)
k,v∈⇒k,v∈pop { k} { ks} { k'} { v} ( m@( ( k , _) ∷ kvs ' , push k≢ks uks') , refl) k≢k' ( there k,v'∈kvs ') = k,v'∈kvs '
k,v∈⇒k,v∈pop { k} { ks} { k'} { v} ( m@( ( k , _) ∷ fm ' , push k≢ks uks') , refl) k≢k' ( here refl) = ⊥-elim ( k≢k' refl)
k,v∈⇒k,v∈pop { k} { ks} { k'} { v} ( m@( ( k , _) ∷ fm ' , push k≢ks uks') , refl) k≢k' ( there k,v'∈fm ') = k,v'∈fm '
Provenance-union : ∀ { ks : List A} ( fm₁ fm₂ : FiniteMap ks) ( k : A) ( v : B) → ( k , v) ∈ᵐ ( fm₁ ⊔ᵐ fm₂) → Σ ( B × B) ( λ ( v₁ , v₂) → ( ( v ≡ v₁ ⊔₂ v₂) × ( ( k , v₁) ∈ᵐ fm₁ × ( k , v₂) ∈ᵐ fm₂) ) )
Provenance-union fm₁@( m₁ , ks₁≡ks) fm₂@( m₂ , ks₂≡ks) k v k,v∈fm₁fm₂
Provenance-union : ∀ { ks : List A} ( fm₁ fm₂ : FiniteMap ks) { k : A} { v : B} → ( k , v) ∈ᵐ ( fm₁ ⊔ᵐ fm₂) → Σ ( B × B) ( λ ( v₁ , v₂) → ( ( v ≡ v₁ ⊔₂ v₂) × ( ( k , v₁) ∈ᵐ fm₁ × ( k , v₂) ∈ᵐ fm₂) ) )
Provenance-union fm₁@( m₁ , ks₁≡ks) fm₂@( m₂ , ks₂≡ks) { k} { v} k,v∈fm₁fm₂
with Expr-Provenance k ( ( ` m₁) ∪ ( ` m₂) ) ( forget { m = proj₁ ( fm₁ ⊔ᵐ fm₂) } k,v∈fm₁fm₂)
... | ( _ , ( in ₁ ( single k,v∈m₁) k∉km₂ , _) ) with k∈km₁ ← ( forget { m = m₁} k,v∈m₁) rewrite trans ks₁≡ks ( sym ks₂≡ks) = ⊥-elim ( k∉km₂ k∈km₁)
... | ( _ , ( in ₂ k∉km₁ ( single k,v∈m₂) , _) ) with k∈km₂ ← ( forget { m = m₂} k,v∈m₂) rewrite trans ks₁≡ks ( sym ks₂≡ks) = ⊥-elim ( k∉km₁ k∈km₂)
... | ( v₁⊔v₂ , ( bothᵘ { v₁} { v₂} ( single k,v₁∈m₁) ( single k,v₂∈m₂) , k,v₁⊔v₂∈m₁m₂) )
rewrite Map-functional { m = proj₁ ( fm₁ ⊔ᵐ fm₂) } k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂ = ( ( v₁ , v₂) , ( refl , ( k,v₁∈m₁ , k,v₂∈m₂) ) )
pop-⊔-distr : ∀ { k : A} { ks : List A} ( fm₁ fm₂ : FiniteMap ( k ∷ ks) ) → pop ( fm₁ ⊔ᵐ fm₂) ≈ᵐ ( pop fm₁ ⊔ᵐ pop fm₂)
pop-⊔-distr { k} { ks} fm₁@( m₁ , _) fm₂@( m₂ , _) = ( pfm₁fm₂⊆pfm₁pfm₂ , pfm₁pfm₂⊆pfm₁fm₂)
where
@@ -160,51 +161,51 @@ module IterProdIsomorphism where
pfm₁fm₂⊆pfm₁pfm₂ : pop ( fm₁ ⊔ᵐ fm₂) ⊆ᵐ ( pop fm₁ ⊔ᵐ pop fm₂)
pfm₁fm₂⊆pfm₁pfm₂ k' v' k',v'∈pfm₁fm₂
with ( k≢k' , k',v'∈fm₁fm₂) ← k,v∈pop⇒k,v∈ ( fm₁ ⊔ᵐ fm₂) k',v'∈pfm₁fm₂
with ( ( v₁ , v₂) , ( refl , ( k,v₁∈fm₁ , k,v₂∈fm₂) ) ) ← Provenance-union fm₁ fm₂ k' v' k' ,v'∈fm₁fm₂
with ( ( v₁ , v₂) , ( refl , ( k,v₁∈fm₁ , k,v₂∈fm₂) ) ) ← Provenance-union fm₁ fm₂ k',v'∈fm₁fm₂
with k',v₁∈pfm₁ ← k,v∈⇒k,v∈pop fm₁ k≢k' k,v₁∈fm₁
with k',v₂∈pfm₂ ← k,v∈⇒k,v∈pop fm₂ k≢k' k,v₂∈fm₂
= ( v₁ ⊔₂ v₂ , ( IsLattice.≈-refl lB , ⊔-combines { m₁ = proj₁ ( pop fm₁) } { m₂ = proj₁ ( pop fm₂) } k',v₁∈pfm₁ k',v₂∈pfm₂) )
pfm₁pfm₂⊆pfm₁fm₂ : ( pop fm₁ ⊔ᵐ pop fm₂) ⊆ᵐ pop ( fm₁ ⊔ᵐ fm₂)
pfm₁pfm₂⊆pfm₁fm₂ k' v' k',v'∈pfm₁pfm₂
with ( ( v₁ , v₂) , ( refl , ( k,v₁∈pfm₁ , k,v₂∈pfm₂) ) ) ← Provenance-union ( pop fm₁) ( pop fm₂) k' v' k' ,v'∈pfm₁pfm₂
with ( ( v₁ , v₂) , ( refl , ( k,v₁∈pfm₁ , k,v₂∈pfm₂) ) ) ← Provenance-union ( pop fm₁) ( pop fm₂) k',v'∈pfm₁pfm₂
with ( k≢k' , k',v₁∈fm₁) ← k,v∈pop⇒k,v∈ fm₁ k,v₁∈pfm₁
with ( _ , k',v₂∈fm₂) ← k,v∈pop⇒k,v∈ fm₂ k,v₂∈pfm₂
= ( v₁ ⊔₂ v₂ , ( IsLattice.≈-refl lB , k,v∈⇒k,v∈pop ( fm₁ ⊔ᵐ fm₂) k≢k' ( ⊔-combines { m₁ = m₁} { m₂ = m₂} k',v₁∈fm₁ k',v₂∈fm₂) ) )
from-rest : ∀ { k : A} { ks : List A} ( fm : FiniteMap ( k ∷ ks) ) → proj₂ ( from fm) ≡ from ( pop fm)
from-rest ( ( ( _ ∷ kvs ') , push _ ukvs ') , refl) = refl
from-rest ( ( ( _ ∷ fm ') , push _ ufm ') , refl) = refl
from-preserves-≈ : ∀ { ks : List A} → ( fm₁ fm₂ : FiniteMap ks) → fm₁ ≈ᵐ fm₂ → ( _≈ⁱᵖ_ { ks} ) ( from fm₁) ( from fm₂)
from-preserves-≈ { []} ( ( [] , _) , _) ( ( [] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-preserves-≈ { k ∷ ks'} fm₁@( m₁ , _) fm₂@( m₂ , _) fm₁≈fm₂@( kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
from-preserves-≈ : ∀ { ks : List A} → { fm₁ fm₂ : FiniteMap ks} → fm₁ ≈ᵐ fm₂ → ( _≈ⁱᵖ_ { ks} ) ( from fm₁) ( from fm₂)
from-preserves-≈ { []} { ( [] , _) , _} { ( [] , _) , _} _ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-preserves-≈ { k ∷ ks'} { fm₁@( m₁ , _) } { fm₂@( m₂ , _) } fm₁≈fm₂@( kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
... | ( v₁ , k,v₁∈fm₁) | ( v₂ , k,v₂∈fm₂) | refl | refl
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
... | ( v₁' , ( v₁≈v₁' , k,v₁'∈fm₂) )
rewrite Map-functional { m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
rewrite from-rest fm₁ rewrite from-rest fm₂
= ( v₁≈v₁' , from-preserves-≈ ( pop fm₁) ( pop fm₂) ( pop-≈ fm₁ fm₂ fm₁≈fm₂) )
= ( v₁≈v₁' , from-preserves-≈ { ks'} { pop fm₁} { pop fm₂} ( pop-≈ fm₁ fm₂ fm₁≈fm₂) )
to-preserves-≈ : ∀ { ks : List A} ( uks : Unique ks) ( ip₁ ip₂ : IterProd ( length ks) ) → _≈ⁱᵖ_ { ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
to-preserves-≈ { []} empty tt tt _ = ( ( λ k v ( ) ) , ( λ k v ( ) ) )
to-preserves-≈ { k ∷ ks'} uks@( push k≢ks' uks') ip₁@( v₁ , rest₁) ip₂@( v₂ , rest₂) ( v₁≈v₂ , rest₁≈rest₂) = ( fm₁⊆fm₂ , fm₂⊆fm₁)
to-preserves-≈ : ∀ { ks : List A} ( uks : Unique ks) { ip₁ ip₂ : IterProd ( length ks) } → _≈ⁱᵖ_ { ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
to-preserves-≈ { []} empty { tt} { tt} _ = ( ( λ k v ( ) ) , ( λ k v ( ) ) )
to-preserves-≈ { k ∷ ks'} uks@( push k≢ks' uks') { ip₁@( v₁ , rest₁) } { ip₂@( v₂ , rest₂) } ( v₁≈v₂ , rest₁≈rest₂) = ( fm₁⊆fm₂ , fm₂⊆fm₁)
where
fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂
fm₁⊆fm₂ k v k,v∈kvs₁
with ( ( kvs '₁ , ukvs '₁) , kvs '₁≡ks') ← to uks' rest₁ in p₁
with ( ( kvs '₂ , ukvs '₂) , kvs '₂≡ks') ← to uks' rest₂ in p₂
with ( ( fm '₁ , ufm '₁) , fm '₁≡ks') ← to uks' rest₁ in p₁
with ( ( fm '₂ , ufm '₂) , fm '₂≡ks') ← to uks' rest₂ in p₂
with k,v∈kvs₁
... | here refl = ( v₂ , ( v₁≈v₂ , here refl) )
... | there k,v∈kvs '₁ with refl ← p₁ with refl ← p₂ = let ( v' , ( v≈v' , k,v'∈kvs₁) ) = proj₁ ( to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs '₁ in ( v' , ( v≈v' , there k,v'∈kvs₁) )
... | there k,v∈fm '₁ with refl ← p₁ with refl ← p₂ = let ( v' , ( v≈v' , k,v'∈kvs₁) ) = proj₁ ( to-preserves-≈ uks' { rest₁} { rest₂} rest₁≈rest₂) k v k,v∈fm '₁ in ( v' , ( v≈v' , there k,v'∈kvs₁) )
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
fm₂⊆fm₁ k v k,v∈kvs₂
with ( ( kvs '₁ , ukvs '₁) , kvs '₁≡ks') ← to uks' rest₁ in p₁
with ( ( kvs '₂ , ukvs '₂) , kvs '₂≡ks') ← to uks' rest₂ in p₂
with ( ( fm '₁ , ufm '₁) , fm '₁≡ks') ← to uks' rest₁ in p₁
with ( ( fm '₂ , ufm '₂) , fm '₂≡ks') ← to uks' rest₂ in p₂
with k,v∈kvs₂
... | here refl = ( v₁ , ( IsLattice.≈-sym lB v₁≈v₂ , here refl) )
... | there k,v∈kvs '₂ with refl ← p₁ with refl ← p₂ = let ( v' , ( v≈v' , k,v'∈kvs₂) ) = proj₂ ( to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs '₂ in ( v' , ( v≈v' , there k,v'∈kvs₂) )
... | there k,v∈fm '₂ with refl ← p₁ with refl ← p₂ = let ( v' , ( v≈v' , k,v'∈kvs₂) ) = proj₂ ( to-preserves-≈ uks' { rest₁} { rest₂} rest₁≈rest₂) k v k,v∈fm '₂ in ( v' , ( v≈v' , there k,v'∈kvs₂) )
from-⊔-distr : ∀ { ks : List A} → ( fm₁ fm₂ : FiniteMap ks) → _≈ⁱᵖ_ { ks} ( from ( fm₁ ⊔ᵐ fm₂) ) ( _⊔ⁱᵖ_ { ks} ( from fm₁) ( from fm₂) )
from-⊔-distr { []} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
@@ -220,5 +221,54 @@ module IterProdIsomorphism where
rewrite Map-functional { m = proj₁ ( fm₁ ⊔ᵐ fm₂) } k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
rewrite from-rest ( fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
= ( IsLattice.≈-refl lB
, IsEquivalence.≈-trans ( IP.≈-equiv ( length ks) ) ( from-preserves-≈ ( pop ( fm₁ ⊔ᵐ fm₂) ) ( pop fm₁ ⊔ᵐ pop fm₂) ( pop-⊔-distr fm₁ fm₂) ) ( ( from-⊔-distr ( pop fm₁) ( pop fm₂) ) )
, IsEquivalence.≈-trans ( IP.≈-equiv ( length ks) ) ( from-preserves-≈ { _} { pop ( fm₁ ⊔ᵐ fm₂) } { pop fm₁ ⊔ᵐ pop fm₂} ( pop-⊔-distr fm₁ fm₂) ) ( ( from-⊔-distr ( pop fm₁) ( pop fm₂) ) )
)
to-⊔-distr : ∀ { ks : List A} ( uks : Unique ks) → ( ip₁ ip₂ : IterProd ( length ks) ) → to uks ( _⊔ⁱᵖ_ { ks} ip₁ ip₂) ≈ᵐ ( to uks ip₁ ⊔ᵐ to uks ip₂)
to-⊔-distr { []} empty tt tt = ( ( λ k v ( ) ) , ( λ k v ( ) ) )
to-⊔-distr { ks@( k ∷ ks') } uks@( push k≢ks' uks') ip₁@( v₁ , rest₁) ip₂@( v₂ , rest₂) = ( fm⊆fm₁fm₂ , fm₁fm₂⊆fm)
where
fm₁ = to uks ip₁
fm₁' = to uks' rest₁
fm₂ = to uks ip₂
fm₂' = to uks' rest₂
fm = to uks ( _⊔ⁱᵖ_ { k ∷ ks'} ip₁ ip₂)
fm⊆fm₁fm₂ : fm ⊆ᵐ ( fm₁ ⊔ᵐ fm₂)
fm⊆fm₁fm₂ k v ( here refl) =
( v₁ ⊔₂ v₂
, ( IsLattice.≈-refl lB
, ⊔-combines { k} { v₁} { v₂} { proj₁ fm₁} { proj₁ fm₂} ( here refl) ( here refl)
)
)
fm⊆fm₁fm₂ k' v ( there k',v∈fm')
with ( fm'⊆fm'₁fm'₂ , _) ← to-⊔-distr uks' rest₁ rest₂
with ( v' , ( v₁⊔v₂≈v' , k',v'∈fm'₁fm'₂) ) ← fm'⊆fm'₁fm'₂ k' v k',v∈fm'
with ( _ , ( refl , ( v₁∈fm'₁ , v₂∈fm'₂) ) ) ← Provenance-union fm₁' fm₂' k',v'∈fm'₁fm'₂ =
( v' , ( v₁⊔v₂≈v' , ⊔-combines { m₁ = proj₁ fm₁} { m₂ = proj₁ fm₂} ( there v₁∈fm'₁) ( there v₂∈fm'₂) ) )
fm₁fm₂⊆fm : ( fm₁ ⊔ᵐ fm₂) ⊆ᵐ fm
fm₁fm₂⊆fm k' v k',v∈fm₁fm₂
with ( _ , fm'₁fm'₂⊆fm') ← to-⊔-distr uks' rest₁ rest₂
with ( _ , ( refl , ( v₁∈fm₁ , v₂∈fm₂) ) ) ← Provenance-union fm₁ fm₂ k',v∈fm₁fm₂
with v₁∈fm₁ | v₂∈fm₂
... | here refl | here refl = ( v , ( IsLattice.≈-refl lB , here refl) )
... | here refl | there k',v₂∈fm₂' = ⊥-elim ( All¬-¬Any k≢ks' ( subst ( λ list → k' ∈ˡ list) ( proj₂ fm₂') ( forget { m = proj₁ fm₂'} k',v₂∈fm₂') ) )
... | there k',v₁∈fm₁' | here refl = ⊥-elim ( All¬-¬Any k≢ks' ( subst ( λ list → k' ∈ˡ list) ( proj₂ fm₁') ( forget { m = proj₁ fm₁'} k',v₁∈fm₁') ) )
... | there k',v₁∈fm₁' | there k',v₂∈fm₂' =
let
k',v₁v₂∈fm₁'fm₂' = ⊔-combines { m₁ = proj₁ fm₁'} { m₂ = proj₁ fm₂'} k',v₁∈fm₁' k',v₂∈fm₂'
( v' , ( v₁⊔v₂≈v' , v'∈fm') ) = fm'₁fm'₂⊆fm' _ _ k',v₁v₂∈fm₁'fm₂'
in
( v' , ( v₁⊔v₂≈v' , there v'∈fm') )
module _ {ks : List A} ( uks : Unique ks) ( ≈₂-dec : Decidable _≈₂_) ( h₂ : ℕ ) ( fhB : FixedHeight₂ h₂) where
import Isomorphism
open Isomorphism.TransportFiniteHeight
( IP.isFiniteHeightLattice ( length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) ( isLattice ks)
{ f = to uks} { g = from { ks} }
( to-preserves-≈ uks) ( from-preserves-≈ { ks} )
( to-⊔-distr uks) ( from-⊔-distr { ks} )
( from-to-inverseʳ uks) ( from-to-inverseˡ uks)
using ( isFiniteHeightLattice) public