Compare commits
3 Commits
b1c6b4c99a
...
aafcb2683d
Author | SHA1 | Date | |
---|---|---|---|
aafcb2683d | |||
8c9f39ac35 | |||
6384f7006e |
|
@ -4,8 +4,18 @@ open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||||
open import Relation.Binary.Definitions
|
open import Relation.Binary.Definitions
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||||||
|
|
||||||
record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where
|
module _ {a} (A : Set a) (_≈_ : A → A → Set a) where
|
||||||
|
IsReflexive : Set a
|
||||||
|
IsReflexive = ∀ {a : A} → a ≈ a
|
||||||
|
|
||||||
|
IsSymmetric : Set a
|
||||||
|
IsSymmetric = ∀ {a b : A} → a ≈ b → b ≈ a
|
||||||
|
|
||||||
|
IsTransitive : Set a
|
||||||
|
IsTransitive = ∀ {a b c : A} → a ≈ b → b ≈ c → a ≈ c
|
||||||
|
|
||||||
|
record IsEquivalence : Set a where
|
||||||
field
|
field
|
||||||
≈-refl : {a : A} → a ≈ a
|
≈-refl : IsReflexive
|
||||||
≈-sym : {a b : A} → a ≈ b → b ≈ a
|
≈-sym : IsSymmetric
|
||||||
≈-trans : {a b c : A} → a ≈ b → b ≈ c → a ≈ c
|
≈-trans : IsTransitive
|
||||||
|
|
61
Isomorphism.agda
Normal file
61
Isomorphism.agda
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
module Isomorphism where
|
||||||
|
|
||||||
|
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||||
|
open import Function.Definitions using (Inverseˡ; Inverseʳ; Injective)
|
||||||
|
open import Lattice
|
||||||
|
open import Equivalence
|
||||||
|
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||||
|
open import Data.Nat using (ℕ)
|
||||||
|
open import Data.Product using (_,_)
|
||||||
|
open import Relation.Nullary using (¬_)
|
||||||
|
|
||||||
|
module TransportFiniteHeight
|
||||||
|
{a b : Level} {A : Set a} {B : Set b}
|
||||||
|
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||||||
|
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||||
|
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||||||
|
{height : ℕ}
|
||||||
|
(fhlA : IsFiniteHeightLattice A height _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_)
|
||||||
|
{f : A → B} {g : B → A}
|
||||||
|
(f-preserves-≈₁ : f Preserves _≈₁_ ⟶ _≈₂_) (g-preserves-≈₂ : g Preserves _≈₂_ ⟶ _≈₁_)
|
||||||
|
(f-⊔-distr : ∀ (a₁ a₂ : A) → f (a₁ ⊔₁ a₂) ≈₂ ((f a₁) ⊔₂ (f a₂)))
|
||||||
|
(g-⊔-distr : ∀ (b₁ b₂ : B) → g (b₁ ⊔₂ b₂) ≈₁ ((g b₁) ⊔₁ (g b₂)))
|
||||||
|
(inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g) (inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g) where
|
||||||
|
|
||||||
|
open IsFiniteHeightLattice fhlA using () renaming (_≺_ to _≺₁_; ≺-cong to ≺₁-cong; ≈-equiv to ≈₁-equiv)
|
||||||
|
open IsLattice lB using () renaming (_≺_ to _≺₂_; ≺-cong to ≺₂-cong; ≈-equiv to ≈₂-equiv)
|
||||||
|
|
||||||
|
open IsEquivalence ≈₁-equiv using () renaming (≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||||
|
open IsEquivalence ≈₂-equiv using () renaming (≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans)
|
||||||
|
|
||||||
|
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||||
|
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||||
|
|
||||||
|
f-Injective : Injective _≈₁_ _≈₂_ f
|
||||||
|
f-Injective {x} {y} fx≈fy = ≈₁-trans (≈₁-sym (inverseʳ x)) (≈₁-trans (g-preserves-≈₂ fx≈fy) (inverseʳ y))
|
||||||
|
|
||||||
|
g-Injective : Injective _≈₂_ _≈₁_ g
|
||||||
|
g-Injective {x} {y} gx≈gy = ≈₂-trans (≈₂-sym (inverseˡ x)) (≈₂-trans (f-preserves-≈₁ gx≈gy) (inverseˡ y))
|
||||||
|
|
||||||
|
f-preserves-̷≈ : f Preserves (λ x y → ¬ x ≈₁ y) ⟶ (λ x y → ¬ x ≈₂ y)
|
||||||
|
f-preserves-̷≈ x̷≈y = λ fx≈fy → x̷≈y (f-Injective fx≈fy)
|
||||||
|
|
||||||
|
g-preserves-̷≈ : g Preserves (λ x y → ¬ x ≈₂ y) ⟶ (λ x y → ¬ x ≈₁ y)
|
||||||
|
g-preserves-̷≈ x̷≈y = λ gx≈gy → x̷≈y (g-Injective gx≈gy)
|
||||||
|
|
||||||
|
portChain₁ : ∀ {a₁ a₂ : A} {h : ℕ} → Chain₁ a₁ a₂ h → Chain₂ (f a₁) (f a₂) h
|
||||||
|
portChain₁ (done₁ a₁≈a₂) = done₂ (f-preserves-≈₁ a₁≈a₂)
|
||||||
|
portChain₁ (step₁ {a₁} {a₂} (a₁≼a₂ , a₁̷≈a₂) a₂≈a₂' c) = step₂ (≈₂-trans (≈₂-sym (f-⊔-distr a₁ a₂)) (f-preserves-≈₁ a₁≼a₂) , f-preserves-̷≈ a₁̷≈a₂) (f-preserves-≈₁ a₂≈a₂') (portChain₁ c)
|
||||||
|
|
||||||
|
portChain₂ : ∀ {b₁ b₂ : B} {h : ℕ} → Chain₂ b₁ b₂ h → Chain₁ (g b₁) (g b₂) h
|
||||||
|
portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁)
|
||||||
|
portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c)
|
||||||
|
|
||||||
|
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||||
|
isFiniteHeightLattice =
|
||||||
|
let
|
||||||
|
(((a₁ , a₂) , c) , bounded₁) = IsFiniteHeightLattice.fixedHeight fhlA
|
||||||
|
in record
|
||||||
|
{ isLattice = lB
|
||||||
|
; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' → bounded₁ (portChain₂ c'))
|
||||||
|
}
|
|
@ -20,7 +20,7 @@ IterProd k = iterate k (λ t → A × t) B
|
||||||
-- To make iteration more convenient, package the definitions in Lattice
|
-- To make iteration more convenient, package the definitions in Lattice
|
||||||
-- records, perform the recursion, and unpackage.
|
-- records, perform the recursion, and unpackage.
|
||||||
|
|
||||||
private module _ where
|
module _ where
|
||||||
lattice : ∀ {k : ℕ} → Lattice (IterProd k)
|
lattice : ∀ {k : ℕ} → Lattice (IterProd k)
|
||||||
lattice {0} = record
|
lattice {0} = record
|
||||||
{ _≈_ = _≈₂_
|
{ _≈_ = _≈₂_
|
||||||
|
|
Loading…
Reference in New Issue
Block a user