Compare commits

...

3 Commits

Author SHA1 Message Date
Danila Fedorin 5d56a7ce2d Fix comments in Forward.agda
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-23 12:09:14 -07:00
Danila Fedorin 2e096bd64e Extract common parts of forward analyses into Forward.agda
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-22 17:50:29 -07:00
Danila Fedorin 1a7b2a1736 Adjust behavior of eval to not require constant 'k in vars' threading
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-22 17:15:40 -07:00
3 changed files with 240 additions and 189 deletions

190
Analysis/Forward.agda Normal file
View File

@ -0,0 +1,190 @@
open import Language
open import Lattice
module Analysis.Forward
{L : Set} {h}
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_) where
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; _,_)
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Function using (_∘_)
open import Utils using (Pairwise)
import Lattice.FiniteValueMap
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; fixedHeight to fixedHeightˡ
; _≼_ to _≼ˡ_
)
module WithProg (prog : Program) where
open Program prog
-- The variable -> abstract value (e.g. sign) map is a finite value-map
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
open VariableValuesFiniteMap
using ()
renaming
( FiniteMap to VariableValues
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
; ∈k-dec to ∈k-decᵛ
; all-equal-keys to all-equal-keysᵛ
)
public
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
)
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
public
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State → StateVariables → VariableValues
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
)
-- With 'join' in hand, we need to perform abstract evaluation.
module WithEvaluator (eval : Expr → VariableValues → L)
(eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where
-- For a particular evaluation function, we need to perform an evaluation
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
-- generalized update to set the single key's value.
private module _ (k : String) (e : Expr) where
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
)
public
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
-- The per-state update function makes use of the single-key setter,
-- updateVariablesFromExpression, for the case where the statement
-- is an assignment.
--
-- This per-state function adjusts the variables in that state,
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
updateVariablesForState : State → StateVariables → VariableValues
updateVariablesForState s sv
with code s
... | k ← e =
let
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
in
updateVariablesFromExpression k e vs
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
with code s
... | k ← e =
let
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
)
-- Finally, the whole analysis consists of getting the 'join'
-- of all incoming states, then applying the per-state evaluation
-- function. This is just a composition, and is trivially monotonic.
analyze : StateVariables → StateVariables
analyze = updateAll ∘ joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to result)
public

View File

@ -1,20 +1,16 @@
module Analysis.Sign where
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; _,_)
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
open import Data.Product using (proj₁; _,_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Function using (_∘_)
open import Relation.Nullary using (yes; no)
open import Language
open import Lattice
open import Utils using (Pairwise)
open import Showable using (Showable; show)
import Lattice.FiniteValueMap
import Analysis.Forward
data Sign : Set where
+ : Sign
@ -61,8 +57,7 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
open AB.Plain 0ˢ using ()
renaming
( finiteHeightLattice to finiteHeightLatticeᵍ
; isLattice to isLatticeᵍ
( isLattice to isLatticeᵍ
; fixedHeight to fixedHeightᵍ
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
@ -114,196 +109,59 @@ postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ
module WithProg (prog : Program) where
open Program prog
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
open VariableSignsFiniteMap
using ()
renaming
( FiniteMap to VariableSigns
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ᵍ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
)
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeᵍ vars-Unique ≈ᵍ-dec _ fixedHeightᵍ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
)
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg
≈ᵛ-dec = ≈ᵍ-dec⇒≈ᵛ-dec ≈ᵍ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
eval : ∀ (e : Expr) → VariableValues → SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs)
eval (` k) vs
with ∈k-decᵛ k (proj₁ (proj₁ vs))
... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs)
... | no _ = ⊤ᵍ
eval (# 0) _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ = [ + ]ᵍ
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State → StateVariables → VariableSigns
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
)
-- With 'join' in hand, we need to perform abstract evaluation.
vars-in-Map : ∀ (k : String) (vs : VariableSigns) →
k ∈ˡ vars → k ∈kᵛ vs
vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
eval : ∀ (e : Expr) → (∀ k → k ∈ᵉ e → k ∈ˡ vars) → VariableSigns → SignLattice
eval (e₁ + e₂) k∈e⇒k∈vars vs =
plus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs)
eval (e₁ - e₂) k∈e⇒k∈vars vs =
minus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs)
eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here)))
eval (# 0) _ _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ _ = [ + ]ᵍ
eval-Mono : ∀ (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars)
eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
g₁vs₁ = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
g₁vs₁ = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
let
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here))
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here))
in
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
eval-Mono (# 0) _ _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl
private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) where
open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e k∈e⇒k∈vars) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
)
public
updateVariablesForState : State → StateVariables → VariableSigns
updateVariablesForState s sv
-- More weirdness here. Apparently, capturing the with-equality proof
-- using 'in p' makes code that reasons about this function (below)
-- throw ill-typed with-abstraction errors. Instead, make use of the
-- fact that later with-clauses are generalized over earlier ones to
-- construct a specialization of vars-complete for (code s).
with code s | (λ k → vars-complete {k} s)
... | k ← e | k∈codes⇒k∈vars =
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ =
let
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} k∈kvs₁
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂
in
updateVariablesFromExpression k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) vs
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
with code s | (λ k → vars-complete {k} s)
... | k ← e | k∈codes⇒k∈vars =
let
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
updateVariablesFromExpression-Mono k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂
open ForwardWithProg.WithEvaluator eval eval-Mono using (result)
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
)
analyze : StateVariables → StateVariables
analyze = updateAll ∘ joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to signs)
-- Debugging code: print the resulting map.
output = show signs
-- For debugging purposes, print out the result.
output = show result

View File

@ -12,7 +12,7 @@ module Lattice.FiniteMap {a b : Level} {A : Set a} {B : Set b}
open IsLattice lB using () renaming (_≼_ to _≼₂_)
open import Lattice.Map ≡-dec-A lB as Map
using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec)
using (Map; ⊔-equal-keys; ⊓-equal-keys)
renaming
( _≈_ to _≈ᵐ_
; _⊔_ to _⊔ᵐ_
@ -37,6 +37,7 @@ open import Lattice.Map ≡-dec-A lB as Map
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
; f'-Monotonic to f'-Monotonicᵐ
; _≼_ to _≼ᵐ_
; ∈k-dec to ∈k-decᵐ
)
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
@ -82,6 +83,8 @@ module WithKeys (ks : List A) where
_∈k_ : A → FiniteMap → Set a
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
∈k-dec = ∈k-decᵐ
locate : ∀ {k : A} {fm : FiniteMap} → k ∈k fm → Σ B (λ v → (k , v) ∈ fm)
locate {k} {fm = (m , _)} k∈kfm = locateᵐ {k} {m} k∈kfm
@ -182,7 +185,7 @@ module WithKeys (ks : List A) where
fm₁ ≼ fm₂ → Pairwise _≼₂_ (fm₁ [ ks' ]) (fm₂ [ ks' ])
m₁≼m₂⇒m₁[ks]≼m₂[ks] _ _ [] _ = []
m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁@(m₁ , km₁≡ks) fm₂@(m₂ , km₂≡ks) (k ∷ ks'') m₁≼m₂
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
... | yes k∈km₁ | yes k∈km₂ =
let
(v₁ , k,v₁∈m₁) = locateᵐ {m = m₁} k∈km₁