Compare commits
No commits in common. "f0da9a902005b24db4e03a89c2862493735467c4" and "3e88a64ed9c0e450a8b49ae98be4fc2771f39ab6" have entirely different histories.
f0da9a9020
...
3e88a64ed9
|
@ -13,7 +13,6 @@ open import Function using (_∘_)
|
|||
open import Language
|
||||
open import Lattice
|
||||
open import Utils using (Pairwise)
|
||||
open import Showable using (Showable; show)
|
||||
import Lattice.FiniteValueMap
|
||||
|
||||
data Sign : Set where
|
||||
|
@ -21,16 +20,6 @@ data Sign : Set where
|
|||
- : Sign
|
||||
0ˢ : Sign
|
||||
|
||||
instance
|
||||
showable : Showable Sign
|
||||
showable = record
|
||||
{ show = (λ
|
||||
{ + → "+"
|
||||
; - → "-"
|
||||
; 0ˢ → "0"
|
||||
})
|
||||
}
|
||||
|
||||
-- g for siGn; s is used for strings and i is not very descriptive.
|
||||
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
||||
_≟ᵍ_ + + = yes refl
|
||||
|
@ -306,4 +295,47 @@ module WithProg (prog : Program) where
|
|||
|
||||
|
||||
-- Debugging code: print the resulting map.
|
||||
output = show signs
|
||||
open import Data.Fin using (suc; zero)
|
||||
open import Data.Fin.Show using () renaming (show to showFin)
|
||||
open import Data.Nat.Show using () renaming (show to showNat)
|
||||
open import Data.String using (_++_)
|
||||
open import Data.List using () renaming (length to lengthˡ)
|
||||
|
||||
showAboveBelow : AB.AboveBelow → String
|
||||
showAboveBelow AB.⊤ = "⊤"
|
||||
showAboveBelow AB.⊥ = "⊥"
|
||||
showAboveBelow (AB.[_] +) = "+"
|
||||
showAboveBelow (AB.[_] -) = "-"
|
||||
showAboveBelow (AB.[_] 0ˢ) = "0"
|
||||
|
||||
showVarSigns : VariableSigns → String
|
||||
showVarSigns ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest → x ++ " ↦ " ++ showAboveBelow y ++ ", " ++ rest) "" kvs ++ "}"
|
||||
|
||||
showStateVars : StateVariables → String
|
||||
showStateVars ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest → (showFin x) ++ " ↦ " ++ showVarSigns y ++ ", " ++ rest) "" kvs ++ "}"
|
||||
|
||||
output = showStateVars signs
|
||||
|
||||
|
||||
-- Debugging code: construct and run a program.
|
||||
open import Data.Vec using (Vec; _∷_; [])
|
||||
open import IO
|
||||
open import Level using (0ℓ)
|
||||
|
||||
testCode : Vec Stmt _
|
||||
testCode =
|
||||
("zero" ← (# 0)) ∷
|
||||
("pos" ← ((` "zero") Expr.+ (# 1))) ∷
|
||||
("neg" ← ((` "zero") Expr.- (# 1))) ∷
|
||||
("unknown" ← ((` "pos") Expr.+ (` "neg"))) ∷
|
||||
[]
|
||||
|
||||
testProgram : Program
|
||||
testProgram = record
|
||||
{ length = _
|
||||
; stmts = testCode
|
||||
}
|
||||
|
||||
open WithProg testProgram using (output)
|
||||
|
||||
main = run {0ℓ} (putStrLn output)
|
||||
|
|
|
@ -11,7 +11,6 @@ open import Data.Empty using (⊥-elim)
|
|||
open import Data.Product using (_,_)
|
||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||
open import Function using (_∘_)
|
||||
open import Showable using (Showable; show)
|
||||
open import Relation.Binary.PropositionalEquality as Eq
|
||||
using (_≡_; sym; subst; refl)
|
||||
|
||||
|
@ -25,16 +24,6 @@ data AboveBelow : Set a where
|
|||
⊤ : AboveBelow
|
||||
[_] : A → AboveBelow
|
||||
|
||||
instance
|
||||
showable : {{ showableA : Showable A }} → Showable AboveBelow
|
||||
showable = record
|
||||
{ show = (λ
|
||||
{ ⊥ → "⊥"
|
||||
; ⊤ → "⊤"
|
||||
; [ a ] → show a
|
||||
})
|
||||
}
|
||||
|
||||
data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||
≈-⊥-⊥ : ⊥ ≈ ⊥
|
||||
≈-⊤-⊤ : ⊤ ≈ ⊤
|
||||
|
|
30
Lattice/Bundles/FiniteValueMap.agda
Normal file
30
Lattice/Bundles/FiniteValueMap.agda
Normal file
|
@ -0,0 +1,30 @@
|
|||
open import Relation.Binary.PropositionalEquality using (_≡_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
|
||||
module Lattice.Bundles.FiniteValueMap (A B : Set) (≡-dec-A : Decidable (_≡_ {_} {A})) where
|
||||
|
||||
open import Lattice
|
||||
open import Data.List using (List)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Utils using (Unique)
|
||||
|
||||
module FromFiniteHeightLattice (fhB : FiniteHeightLattice B)
|
||||
{ks : List A} (uks : Unique ks)
|
||||
(≈₂-dec : Decidable (FiniteHeightLattice._≈_ fhB)) where
|
||||
|
||||
open Lattice.FiniteHeightLattice fhB using () renaming
|
||||
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
|
||||
; height to height₂
|
||||
; isLattice to isLattice₂
|
||||
; fixedHeight to fixedHeight₂
|
||||
)
|
||||
|
||||
import Lattice.FiniteMap
|
||||
module FM = Lattice.FiniteMap ≡-dec-A isLattice₂
|
||||
open FM.WithKeys ks public
|
||||
|
||||
import Lattice.FiniteValueMap
|
||||
module FVM = Lattice.FiniteValueMap ≡-dec-A isLattice₂
|
||||
open FVM.IterProdIsomorphism.WithUniqueKeysAndFixedHeight uks ≈₂-dec height₂ fixedHeight₂ public
|
||||
|
||||
≈-dec = ≈₂-dec⇒≈-dec ≈₂-dec
|
38
Lattice/Bundles/IterProd.agda
Normal file
38
Lattice/Bundles/IterProd.agda
Normal file
|
@ -0,0 +1,38 @@
|
|||
open import Lattice
|
||||
|
||||
module Lattice.Bundles.IterProd {a} (A B : Set a) where
|
||||
open import Data.Nat using (ℕ)
|
||||
|
||||
module _ (lA : Lattice A) (lB : Lattice B) where
|
||||
open Lattice.Lattice lA using () renaming
|
||||
( _≈_ to _≈₁_; _⊔_ to _⊔₁_; _⊓_ to _⊓₁_
|
||||
; isLattice to isLattice₁
|
||||
)
|
||||
|
||||
open Lattice.Lattice lB using () renaming
|
||||
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
|
||||
; isLattice to isLattice₂
|
||||
)
|
||||
|
||||
module _ (k : ℕ) where
|
||||
open import Lattice.IterProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_ isLattice₁ isLattice₂ using (lattice) public
|
||||
|
||||
module _ (fhA : FiniteHeightLattice A) (fhB : FiniteHeightLattice B) where
|
||||
open Lattice.FiniteHeightLattice fhA using () renaming
|
||||
( _≈_ to _≈₁_; _⊔_ to _⊔₁_; _⊓_ to _⊓₁_
|
||||
; height to height₁
|
||||
; isLattice to isLattice₁
|
||||
; fixedHeight to fixedHeight₁
|
||||
)
|
||||
|
||||
open Lattice.FiniteHeightLattice fhB using () renaming
|
||||
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
|
||||
; height to height₂
|
||||
; isLattice to isLattice₂
|
||||
; fixedHeight to fixedHeight₂
|
||||
)
|
||||
|
||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_) (k : ℕ) where
|
||||
import Lattice.IterProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_ isLattice₁ isLattice₂ as IP
|
||||
|
||||
finiteHeightLattice = IP.finiteHeightLattice k ≈₁-dec ≈₂-dec height₁ height₂ fixedHeight₁ fixedHeight₂
|
|
@ -45,17 +45,11 @@ open import Function using (_∘_)
|
|||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Utils using (Pairwise; _∷_; [])
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Showable using (Showable; show)
|
||||
|
||||
module WithKeys (ks : List A) where
|
||||
FiniteMap : Set (a ⊔ℓ b)
|
||||
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
||||
|
||||
instance
|
||||
showable : {{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||
Showable FiniteMap
|
||||
showable = record { show = λ (m₁ , _) → show m₁ }
|
||||
|
||||
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
||||
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
||||
|
||||
|
|
|
@ -13,15 +13,13 @@ open import Data.List.Membership.Propositional as MemProp using () renaming (_
|
|||
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.List using (List; map; []; _∷_; _++_) renaming (foldr to foldrˡ)
|
||||
open import Data.List using (List; map; []; _∷_; _++_)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Equivalence
|
||||
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||||
open import Data.String using () renaming (_++_ to _++ˢ_)
|
||||
open import Showable using (Showable; show)
|
||||
|
||||
open IsLattice lB using () renaming
|
||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||
|
@ -480,14 +478,6 @@ private module ImplInsert (f : B → B → B) where
|
|||
Map : Set (a ⊔ℓ b)
|
||||
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
||||
|
||||
instance
|
||||
showable : {{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||
Showable Map
|
||||
showable = record
|
||||
{ show = λ (kvs , _) →
|
||||
"{" ++ˢ foldrˡ (λ (x , y) rest → show x ++ˢ " ↦ " ++ˢ show y ++ˢ ", " ++ˢ rest) "" kvs ++ˢ "}"
|
||||
}
|
||||
|
||||
empty : Map
|
||||
empty = ([] , Utils.empty)
|
||||
|
||||
|
|
25
Main.agda
25
Main.agda
|
@ -1,25 +0,0 @@
|
|||
module Main where
|
||||
|
||||
open import Language
|
||||
open import Analysis.Sign
|
||||
open import Data.Vec using (Vec; _∷_; [])
|
||||
open import IO
|
||||
open import Level using (0ℓ)
|
||||
|
||||
testCode : Vec Stmt _
|
||||
testCode =
|
||||
("zero" ← (# 0)) ∷
|
||||
("pos" ← ((` "zero") Expr.+ (# 1))) ∷
|
||||
("neg" ← ((` "zero") Expr.- (# 1))) ∷
|
||||
("unknown" ← ((` "pos") Expr.+ (` "neg"))) ∷
|
||||
[]
|
||||
|
||||
testProgram : Program
|
||||
testProgram = record
|
||||
{ length = _
|
||||
; stmts = testCode
|
||||
}
|
||||
|
||||
open WithProg testProgram using (output)
|
||||
|
||||
main = run {0ℓ} (putStrLn output)
|
|
@ -1,38 +0,0 @@
|
|||
module Showable where
|
||||
|
||||
open import Data.String using (String; _++_)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.Nat.Show using () renaming (show to showNat)
|
||||
open import Data.Fin using (Fin)
|
||||
open import Data.Fin.Show using () renaming (show to showFin)
|
||||
open import Data.Product using (_×_; _,_)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
|
||||
record Showable {a} (A : Set a) : Set a where
|
||||
field
|
||||
show : A → String
|
||||
|
||||
open Showable {{ ... }} public
|
||||
|
||||
instance
|
||||
showableString : Showable String
|
||||
showableString = record { show = λ s → "\"" ++ s ++ "\"" }
|
||||
|
||||
showableNat : Showable ℕ
|
||||
showableNat = record { show = showNat }
|
||||
|
||||
showableFin : ∀ {n : ℕ} → Showable (Fin n)
|
||||
showableFin = record { show = showFin }
|
||||
|
||||
showableProd : ∀ {a b} {A : Set a} {B : Set b}
|
||||
{{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||
Showable (A × B)
|
||||
showableProd {{ showableA }} {{ showableB }} = record
|
||||
{ show = λ (a , b) →
|
||||
"(" ++ show a ++
|
||||
", " ++ show b ++
|
||||
")"
|
||||
}
|
||||
|
||||
showableUnit : Showable ⊤
|
||||
showableUnit = record { show = λ tt → "()" }
|
Loading…
Reference in New Issue
Block a user