46 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Agda
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Agda
		
	
	
	
	
	
module Utils where
 | 
						||
 | 
						||
open import Data.Nat using (ℕ; suc)
 | 
						||
open import Data.List using (List; []; _∷_; _++_)
 | 
						||
open import Data.List.Membership.Propositional using (_∈_)
 | 
						||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
 | 
						||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
 | 
						||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
 | 
						||
open import Relation.Nullary using (¬_)
 | 
						||
 | 
						||
data Unique {c} {C : Set c} : List C → Set c where
 | 
						||
    empty : Unique []
 | 
						||
    push : ∀ {x : C} {xs : List C}
 | 
						||
        → All (λ x' → ¬ x ≡ x') xs
 | 
						||
        → Unique xs
 | 
						||
        → Unique (x ∷ xs)
 | 
						||
 | 
						||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
 | 
						||
                ¬ x ∈ xs → Unique xs →  Unique (xs ++ (x ∷ []))
 | 
						||
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
 | 
						||
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
 | 
						||
    push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
 | 
						||
    where
 | 
						||
        x'≢x : ¬ x' ≡ x
 | 
						||
        x'≢x x'≡x = x∉xs (here (sym x'≡x))
 | 
						||
 | 
						||
        help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
 | 
						||
        help {[]} _ = x'≢x ∷ []
 | 
						||
        help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
 | 
						||
 | 
						||
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
 | 
						||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
 | 
						||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
 | 
						||
 | 
						||
All-single : ∀ {p c} {C : Set c} {P : C → Set p} {c : C} {l : List C} → All P l → c ∈ l → P c
 | 
						||
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (here refl) = p
 | 
						||
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (there c∈xs) = All-single ps c∈xs
 | 
						||
 | 
						||
All-x∈xs : ∀ {a} {A : Set a} (xs : List A) → All (λ x → x ∈ xs) xs
 | 
						||
All-x∈xs [] = []
 | 
						||
All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
 | 
						||
 | 
						||
iterate : ∀ {a} {A : Set a} (n : ℕ) → (f : A → A) → A → A
 | 
						||
iterate 0 _ a = a
 | 
						||
iterate (suc n) f a = f (iterate n f a)
 |