205 lines
8.7 KiB
Agda
205 lines
8.7 KiB
Agda
module Language where
|
||
|
||
open import Data.Nat using (ℕ; suc; pred)
|
||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||
open import Data.Product using (Σ; _,_; proj₁; proj₂)
|
||
open import Data.Vec using (Vec; foldr; lookup; _∷_)
|
||
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ)
|
||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁) renaming (_≟_ to _≟ᶠ_)
|
||
open import Data.Fin.Properties using (suc-injective)
|
||
open import Relation.Binary.PropositionalEquality using (cong; _≡_; refl)
|
||
open import Relation.Nullary using (¬_)
|
||
open import Function using (_∘_)
|
||
|
||
open import Lattice
|
||
open import Utils using (Unique; Unique-map; empty; push)
|
||
|
||
data Expr : Set where
|
||
_+_ : Expr → Expr → Expr
|
||
_-_ : Expr → Expr → Expr
|
||
`_ : String → Expr
|
||
#_ : ℕ → Expr
|
||
|
||
data Stmt : Set where
|
||
_←_ : String → Expr → Stmt
|
||
|
||
open import Lattice.MapSet String _≟ˢ_
|
||
renaming
|
||
( MapSet to StringSet
|
||
; insert to insertˢ
|
||
; to-List to to-Listˢ
|
||
; empty to emptyˢ
|
||
; singleton to singletonˢ
|
||
; _⊔_ to _⊔ˢ_
|
||
; `_ to `ˢ_
|
||
; _∈_ to _∈ˢ_
|
||
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
|
||
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
|
||
)
|
||
|
||
data _∈ᵉ_ : String → Expr → Set where
|
||
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
|
||
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
|
||
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
|
||
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
|
||
here : ∀ {k : String} → k ∈ᵉ (` k)
|
||
|
||
data _∈ᵗ_ : String → Stmt → Set where
|
||
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵗ (k ← e)
|
||
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵗ (k' ← e)
|
||
|
||
private
|
||
Expr-vars : Expr → StringSet
|
||
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
|
||
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
|
||
Expr-vars (` s) = singletonˢ s
|
||
Expr-vars (# _) = emptyˢ
|
||
|
||
∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
|
||
∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
|
||
with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||
... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||
... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
|
||
with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||
... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||
... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
|
||
|
||
∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
|
||
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
|
||
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||
{m₂ = Expr-vars e₂}
|
||
(∈⇒∈-Expr-vars k∈e₁)
|
||
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
|
||
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||
{m₂ = Expr-vars e₂}
|
||
(∈⇒∈-Expr-vars k∈e₂)
|
||
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
|
||
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||
{m₂ = Expr-vars e₂}
|
||
(∈⇒∈-Expr-vars k∈e₁)
|
||
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
|
||
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||
{m₂ = Expr-vars e₂}
|
||
(∈⇒∈-Expr-vars k∈e₂)
|
||
∈⇒∈-Expr-vars here = RelAny.here refl
|
||
|
||
Stmt-vars : Stmt → StringSet
|
||
Stmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
|
||
|
||
∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵗ s
|
||
∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
|
||
with Expr-Provenance k ((`ˢ (singletonˢ k')) ∪ (`ˢ (Expr-vars e))) k∈vs
|
||
... | in₁ (single (RelAny.here refl)) _ = in←₁
|
||
... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
|
||
... | bothᵘ (single (RelAny.here refl)) _ = in←₁
|
||
|
||
∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵗ s → k ∈ˢ (Stmt-vars s)
|
||
∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
|
||
⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
|
||
{m₂ = Expr-vars e}
|
||
(RelAny.here refl)
|
||
∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
|
||
⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
|
||
{m₂ = Expr-vars e}
|
||
(∈⇒∈-Expr-vars k∈e)
|
||
|
||
Stmts-vars : ∀ {n : ℕ} → Vec Stmt n → StringSet
|
||
Stmts-vars = foldr (λ n → StringSet)
|
||
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
|
||
|
||
∈-Stmts-vars⇒∈ : ∀ {n : ℕ} {k : String} (ss : Vec Stmt n) →
|
||
k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵗ lookup ss f)
|
||
∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
|
||
with Expr-Provenance k ((`ˢ (Stmt-vars s)) ∪ (`ˢ (Stmts-vars ss'))) k∈vss
|
||
... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||
... | in₂ _ (single k,tt∈vss') =
|
||
let
|
||
(f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
|
||
in
|
||
(suc f' , k∈s')
|
||
... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||
|
||
∈⇒∈-Stmts-vars : ∀ {n : ℕ} {k : String} {ss : Vec Stmt n} {f : Fin n} →
|
||
k ∈ᵗ lookup ss f → k ∈ˢ (Stmts-vars ss)
|
||
∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
|
||
⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
|
||
{m₂ = Stmts-vars ss'}
|
||
(∈⇒∈-Stmt-vars k∈s)
|
||
∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
|
||
⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
|
||
{m₂ = Stmts-vars ss'}
|
||
(∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
|
||
|
||
-- Creating a new number from a natural number can never create one
|
||
-- equal to one you get from weakening the bounds on another number.
|
||
z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (zero ≡ suc f)
|
||
z≢sf f ()
|
||
|
||
z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (mapˡ suc fs)
|
||
z≢mapsfs [] = []
|
||
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
|
||
|
||
indices : ∀ (n : ℕ) → Σ (List (Fin n)) Unique
|
||
indices 0 = ([] , empty)
|
||
indices (suc n') =
|
||
let
|
||
(inds' , unids') = indices n'
|
||
in
|
||
( zero ∷ mapˡ suc inds'
|
||
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
|
||
)
|
||
|
||
|
||
-- For now, just represent the program and CFG as one type, without branching.
|
||
record Program : Set where
|
||
field
|
||
length : ℕ
|
||
stmts : Vec Stmt length
|
||
|
||
private
|
||
vars-Set : StringSet
|
||
vars-Set = Stmts-vars stmts
|
||
|
||
vars : List String
|
||
vars = to-Listˢ vars-Set
|
||
|
||
vars-Unique : Unique vars
|
||
vars-Unique = proj₂ vars-Set
|
||
|
||
State : Set
|
||
State = Fin length
|
||
|
||
states : List State
|
||
states = proj₁ (indices length)
|
||
|
||
states-Unique : Unique states
|
||
states-Unique = proj₂ (indices length)
|
||
|
||
code : State → Stmt
|
||
code = lookup stmts
|
||
|
||
vars-complete : ∀ {k : String} (s : State) → k ∈ᵗ (code s) → k ∈ˡ vars
|
||
vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
|
||
|
||
_≟_ : IsDecidable (_≡_ {_} {State})
|
||
_≟_ = _≟ᶠ_
|
||
|
||
-- Computations for incoming and outgoing edged will have to change too
|
||
-- when we support branching etc.
|
||
|
||
incoming : State → List State
|
||
incoming
|
||
with length
|
||
... | 0 = (λ ())
|
||
... | suc n' = (λ
|
||
{ zero → []
|
||
; (suc f') → (inject₁ f') ∷ []
|
||
})
|