630 lines
38 KiB
Agda
630 lines
38 KiB
Agda
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong)
|
||
open import Relation.Binary.Definitions using (Decidable)
|
||
open import Relation.Binary.Core using (Rel)
|
||
open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ)
|
||
open import Agda.Primitive using (Level; _⊔_)
|
||
|
||
module Map {a b : Level} (A : Set a) (B : Set b)
|
||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||
where
|
||
|
||
import Data.List.Membership.Propositional as MemProp
|
||
|
||
open import Relation.Nullary using (¬_)
|
||
open import Data.Nat using (ℕ)
|
||
open import Data.List using (List; map; []; _∷_; _++_)
|
||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||
open import Data.Empty using (⊥)
|
||
|
||
keys : List (A × B) → List A
|
||
keys = map proj₁
|
||
|
||
data Unique {c} {C : Set c} : List C → Set c where
|
||
empty : Unique []
|
||
push : ∀ {x : C} {xs : List C}
|
||
→ All (λ x' → ¬ x ≡ x') xs
|
||
→ Unique xs
|
||
→ Unique (x ∷ xs)
|
||
|
||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
|
||
¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ []))
|
||
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
||
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
||
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
||
where
|
||
x'≢x : ¬ x' ≡ x
|
||
x'≢x x'≡x = x∉xs (here (sym x'≡x))
|
||
|
||
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
|
||
help {[]} _ = x'≢x ∷ []
|
||
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
||
|
||
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
||
|
||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||
absurd ()
|
||
|
||
private module _ where
|
||
open MemProp using (_∈_)
|
||
|
||
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
||
unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) =
|
||
k≢k' (cong proj₁ k',≡x)
|
||
unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) =
|
||
unique-not-in (rest , k,v'∈xs)
|
||
|
||
ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v'
|
||
ListAB-functional _ (here k,v≡x) (here k,v'≡x) =
|
||
cong proj₂ (trans k,v≡x (sym k,v'≡x))
|
||
ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs)
|
||
rewrite sym k,v≡x = absurd (unique-not-in (k≢xs , k,v'∈xs))
|
||
ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x)
|
||
rewrite sym k,v'≡x = absurd (unique-not-in (k≢xs , k,v∈xs))
|
||
ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) =
|
||
ListAB-functional uxs k,v∈xs k,v'∈xs
|
||
|
||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ keys l)
|
||
∈k-dec k [] = no (λ ())
|
||
∈k-dec k ((k' , v) ∷ xs)
|
||
with (≡-dec-A k k')
|
||
... | yes k≡k' = yes (here k≡k')
|
||
... | no k≢k' with (∈k-dec k xs)
|
||
... | yes k∈kxs = yes (there k∈kxs)
|
||
... | no k∉kxs = no witness
|
||
where
|
||
witness : ¬ k ∈ keys ((k' , v) ∷ xs)
|
||
witness (here k≡k') = k≢k' k≡k'
|
||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||
|
||
∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} →
|
||
(f : C → D) → c ∈ l → f c ∈ map f l
|
||
∈-cong f (here c≡c') = here (cong f c≡c')
|
||
∈-cong f (there c∈xs) = there (∈-cong f c∈xs)
|
||
|
||
locate : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l)
|
||
locate {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl)
|
||
locate {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate k∈kxs in (v , there k,v∈xs)
|
||
|
||
private module ImplRelation (_≈_ : B → B → Set b) where
|
||
open MemProp using (_∈_)
|
||
|
||
subset : List (A × B) → List (A × B) → Set (a ⊔ b)
|
||
subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ →
|
||
Σ B (λ v' → v ≈ v' × ((k , v') ∈ m₂))
|
||
|
||
private module ImplInsert (f : B → B → B) where
|
||
open import Data.List using (map)
|
||
open MemProp using (_∈_)
|
||
|
||
private
|
||
_∈k_ : A → List (A × B) → Set a
|
||
_∈k_ k m = k ∈ (keys m)
|
||
|
||
foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C
|
||
foldr f b [] = b
|
||
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
||
|
||
insert : A → B → List (A × B) → List (A × B)
|
||
insert k v [] = (k , v) ∷ []
|
||
insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||
... | yes _ = (k' , f v v') ∷ xs
|
||
... | no _ = x ∷ insert k v xs
|
||
|
||
union : List (A × B) → List (A × B) → List (A × B)
|
||
union m₁ m₂ = foldr insert m₂ m₁
|
||
|
||
insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
k ∈k l → keys l ≡ keys (insert k v l)
|
||
insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k')
|
||
with (≡-dec-A k k')
|
||
... | yes _ = refl
|
||
... | no k≢k' = absurd (k≢k' k≡k')
|
||
insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs)
|
||
with (≡-dec-A k k')
|
||
... | yes _ = refl
|
||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs)
|
||
|
||
insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l)
|
||
insert-keys-∉ {k} {v} {[]} _ = refl
|
||
insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl
|
||
with (≡-dec-A k k')
|
||
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
||
... | no _ = cong (λ xs' → k' ∷ xs')
|
||
(insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs)))
|
||
|
||
insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)}
|
||
→ Unique (keys l) → Unique (keys (insert k v l))
|
||
insert-preserves-Unique {k} {v} {l} u
|
||
with (∈k-dec k l)
|
||
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
|
||
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
|
||
|
||
union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) →
|
||
Unique (keys l₂) → Unique (keys (union l₁ l₂))
|
||
union-preserves-Unique [] l₂ u₂ = u₂
|
||
union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ =
|
||
insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂)
|
||
|
||
insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ k ∈k l → (k , v) ∈ insert k v l
|
||
insert-fresh {l = []} k∉kl = here refl
|
||
insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
||
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
||
|
||
insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l
|
||
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
||
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
|
||
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
||
with ≡-dec-A k k''
|
||
... | yes k≡k'' = k∉kl (here k≡k'')
|
||
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
||
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
||
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
||
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
||
... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k'
|
||
(λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs
|
||
|
||
union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂
|
||
union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂
|
||
union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' = absurd (k∉kl₁ (here k≡k'))
|
||
... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
||
|
||
insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||
k ∈k l → k ∈k insert k' v' l
|
||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'')
|
||
with (≡-dec-A k' k'')
|
||
... | yes _ = here k≡k''
|
||
... | no _ = here k≡k''
|
||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs)
|
||
with (≡-dec-A k' k'')
|
||
... | yes _ = there k∈kxs
|
||
... | no _ = there (insert-preserves-∈k k∈kxs)
|
||
|
||
union-preserves-∈k₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₁ → k ∈k (union l₁ l₂)
|
||
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (here k≡k')
|
||
with ∈k-dec k (union xs l₂)
|
||
... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂
|
||
... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂)
|
||
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (there k∈kxs) =
|
||
insert-preserves-∈k (union-preserves-∈k₁ k∈kxs)
|
||
|
||
union-preserves-∈k₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₂ → k ∈k (union l₁ l₂)
|
||
union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂
|
||
union-preserves-∈k₂ {k} {(k' , v') ∷ xs} {l₂} k∈kl₂ =
|
||
insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂)
|
||
|
||
∉-union-∉-either : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k union l₁ l₂ → ¬ k ∈k l₁ × ¬ k ∈k l₂
|
||
∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂
|
||
with ∈k-dec k l₁
|
||
... | yes k∈kl₁ = absurd (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁))
|
||
... | no k∉kl₁ with ∈k-dec k l₂
|
||
... | yes k∈kl₂ = absurd (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂))
|
||
... | no k∉kl₂ = (k∉kl₁ , k∉kl₂)
|
||
|
||
|
||
insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l
|
||
insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x)
|
||
rewrite sym k,v=x with ≡-dec-A k' k
|
||
... | yes k'≡k = absurd (k≢k' (sym k'≡k))
|
||
... | no _ = here refl
|
||
insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs)
|
||
with ≡-dec-A k' k''
|
||
... | yes _ = there k,v∈xs
|
||
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
|
||
|
||
union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂
|
||
union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
|
||
union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ =
|
||
let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂
|
||
in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion
|
||
|
||
union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂
|
||
union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
|
||
insert-preserves-∈ k≢k' k,v∈mxs₁l
|
||
where
|
||
k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂
|
||
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
||
... | no k≢k' = k≢k'
|
||
union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
||
insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
|
||
|
||
insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l)
|
||
insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'')
|
||
rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v''
|
||
with ≡-dec-A k' k'
|
||
... | yes _ = here refl
|
||
... | no k≢k' = absurd (k≢k' refl)
|
||
insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs)
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
||
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
||
|
||
union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → Unique (keys l₂) →
|
||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂
|
||
union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
|
||
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
|
||
insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
|
||
union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
|
||
insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
||
where
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
||
... | no k≢k' = k≢k'
|
||
|
||
update : A → B → List (A × B) → List (A × B)
|
||
update k v [] = []
|
||
update k v ((k' , v') ∷ xs) with ≡-dec-A k k'
|
||
... | yes _ = (k' , f v v') ∷ xs
|
||
... | no _ = (k' , v') ∷ update k v xs
|
||
|
||
updates : List (A × B) → List (A × B) → List (A × B)
|
||
updates l₁ l₂ = foldr update l₂ l₁
|
||
|
||
restrict : List (A × B) → List (A × B) → List (A × B)
|
||
restrict l [] = []
|
||
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
||
... | yes _ = (k' , v') ∷ restrict l xs
|
||
... | no _ = restrict l xs
|
||
|
||
intersect : List (A × B) → List (A × B) → List (A × B)
|
||
intersect l₁ l₂ = restrict l₁ (updates l₁ l₂)
|
||
|
||
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
keys l ≡ keys (update k v l)
|
||
update-keys {l = []} = refl
|
||
update-keys {k} {v} {l = (k' , v') ∷ xs}
|
||
with ≡-dec-A k k'
|
||
... | yes _ = refl
|
||
... | no _ rewrite update-keys {k} {v} {xs} = refl
|
||
|
||
updates-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
keys l₂ ≡ keys (updates l₁ l₂)
|
||
updates-keys {[]} = refl
|
||
updates-keys {(k , v) ∷ xs} {l₂}
|
||
rewrite updates-keys {xs} {l₂}
|
||
rewrite update-keys {k} {v} {updates xs l₂} = refl
|
||
|
||
update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
Unique (keys l) → Unique (keys (update k v l ))
|
||
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
||
|
||
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (updates l₁ l₂))
|
||
updates-preserve-Unique {[]} u = u
|
||
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
||
|
||
restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂))
|
||
restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂
|
||
restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs)
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs
|
||
... | no _ = restrict-preserves-k≢ k≢xs
|
||
|
||
restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (restrict l₁ l₂))
|
||
restrict-preserves-Unique {l₁} {[]} _ = empty
|
||
restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs)
|
||
with ∈k-dec k l₁
|
||
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
|
||
... | no _ = restrict-preserves-Unique uxs
|
||
|
||
intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
||
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
||
|
||
updates-preserve-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k updates l₁ l₂
|
||
updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂
|
||
rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂
|
||
|
||
restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂)
|
||
restrict-needs-both {k} {l₁} {[]} ()
|
||
restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂
|
||
with ∈k-dec k' l₁ | k∈l₁l₂
|
||
... | yes k'∈kl₁ | here k≡k'
|
||
rewrite k≡k' =
|
||
(k'∈kl₁ , here refl)
|
||
... | yes _ | there k∈l₁xs =
|
||
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||
in (k∈kl₁ , there k∈kxs)
|
||
... | no k'∉kl₁ | k∈l₁xs =
|
||
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||
in (k∈kl₁ , there k∈kxs)
|
||
|
||
restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂
|
||
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
|
||
let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁
|
||
|
||
restrict-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k restrict l₁ l₂
|
||
restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ =
|
||
let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂
|
||
|
||
intersect-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k intersect l₁ l₂
|
||
intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂}
|
||
|
||
intersect-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k intersect l₁ l₂
|
||
intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ )
|
||
|
||
restrict-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ restrict l₁ l₂
|
||
restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') ∷ xs} k∈kl₁ (here k,v≡k',v')
|
||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v'
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = here refl
|
||
... | no k'∉kl₁ = absurd (k'∉kl₁ k∈kl₁)
|
||
restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') ∷ xs} k∈kl₁ (there k,v∈xs)
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs)
|
||
... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs
|
||
|
||
update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l
|
||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'')
|
||
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
|
||
with ≡-dec-A k' k''
|
||
... | yes k'≡k'' = absurd (k≢k' (sym k'≡k''))
|
||
... | no _ = here refl
|
||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs)
|
||
with ≡-dec-A k' k''
|
||
... | yes _ = there k,v∈xs
|
||
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
|
||
|
||
updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂
|
||
updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂
|
||
updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ =
|
||
update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂)
|
||
|
||
update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l
|
||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'')
|
||
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
|
||
with ≡-dec-A k' k'
|
||
... | yes _ = here refl
|
||
... | no k'≢k' = absurd (k'≢k' refl)
|
||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs)
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
|
||
... | no _ = there (update-combines uxs k,v∈xs)
|
||
|
||
updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → Unique (keys l₂) →
|
||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂
|
||
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂
|
||
rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' =
|
||
update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂)
|
||
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ =
|
||
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
|
||
where
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
|
||
... | no k≢k' = k≢k'
|
||
|
||
|
||
Map : Set (a ⊔ b)
|
||
Map = Σ (List (A × B)) (λ l → Unique (keys l))
|
||
|
||
_∈_ : (A × B) → Map → Set (a ⊔ b)
|
||
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
||
|
||
_∈k_ : A → Map → Set a
|
||
_∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs)
|
||
|
||
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
||
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
||
|
||
data Expr : Set (a ⊔ b) where
|
||
`_ : Map → Expr
|
||
_∪_ : Expr → Expr → Expr
|
||
_∩_ : Expr → Expr → Expr
|
||
|
||
module _ (f : B → B → B) where
|
||
open ImplInsert f renaming
|
||
( insert to insert-impl
|
||
; union to union-impl
|
||
; intersect to intersect-impl
|
||
)
|
||
|
||
union : Map → Map → Map
|
||
union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||
|
||
intersect : Map → Map → Map
|
||
intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
|
||
|
||
module _ (fUnion : B → B → B) (fIntersect : B → B → B) where
|
||
open ImplInsert fUnion using
|
||
( union-combines
|
||
; union-preserves-∈₁
|
||
; union-preserves-∈₂
|
||
; union-preserves-∉
|
||
)
|
||
|
||
open ImplInsert fIntersect using
|
||
( restrict-needs-both
|
||
; updates
|
||
; updates-combine
|
||
; intersect-preserves-∉₁
|
||
; intersect-preserves-∉₂
|
||
; restrict-preserves-∈₂
|
||
)
|
||
|
||
⟦_⟧ : Expr -> Map
|
||
⟦ ` m ⟧ = m
|
||
⟦ e₁ ∪ e₂ ⟧ = union fUnion ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
||
⟦ e₁ ∩ e₂ ⟧ = intersect fIntersect ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
||
|
||
data Provenance (k : A) : B → Expr → Set (a ⊔ b) where
|
||
single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m)
|
||
in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂)
|
||
in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂)
|
||
bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (fUnion v₁ v₂) (e₁ ∪ e₂)
|
||
bothⁱ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (fIntersect v₁ v₂) (e₁ ∩ e₂)
|
||
|
||
Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧))
|
||
Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m))
|
||
Expr-Provenance k (e₁ ∪ e₂) k∈ke₁e₂
|
||
with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧)
|
||
... | yes k∈ke₁ | yes k∈ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (fUnion v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂))
|
||
... | yes k∈ke₁ | no k∉ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂))
|
||
... | no k∉ke₁ | yes k∈ke₂ =
|
||
let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂))
|
||
... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂)
|
||
Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
||
with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧)
|
||
... | yes k∈ke₁ | yes k∈ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (fIntersect v₁ v₂ , (bothⁱ g₁ g₂ , restrict-preserves-∈₂ k∈ke₁ (updates-combine (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂)))
|
||
... | yes k∈ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||
... | no k∉ke₁ | yes k∈ke₂ = absurd (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
||
... | no k∉ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||
|
||
|
||
module _ (_≈_ : B → B → Set b) where
|
||
open ImplRelation _≈_ renaming (subset to subset-impl)
|
||
|
||
subset : Map → Map → Set (a ⊔ b)
|
||
subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
|
||
|
||
lift : Map → Map → Set (a ⊔ b)
|
||
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁
|
||
|
||
module _ (≈-refl : ∀ {b : B} → b ≈ b)
|
||
(≈-sym : ∀ {b₁ b₂ : B} → b₁ ≈ b₂ → b₂ ≈ b₁)
|
||
(f : B → B → B) where
|
||
module I = ImplInsert f
|
||
|
||
-- The Provenance type requires both union and intersection functions,
|
||
-- but here we're working with union only. Just use the union function
|
||
-- for both -- it doesn't matter, since we don't use intersection in
|
||
-- these proofs.
|
||
|
||
module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where
|
||
union-idemp : ∀ (m : Map) → lift (union f m m) m
|
||
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
|
||
where
|
||
mm-m-subset : subset (union f m m) m
|
||
mm-m-subset k v k,v∈mm
|
||
with Expr-Provenance f f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm)
|
||
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
|
||
rewrite Map-functional {m = m} v'∈m v''∈m
|
||
rewrite Map-functional {m = union f m m} k,v∈mm v'v''∈mm =
|
||
(v'' , (f-idemp v'' , v''∈m))
|
||
... | (_ , (in₁ (single {v'} v'∈m) k∉km , _)) = absurd (k∉km (∈-cong proj₁ v'∈m))
|
||
... | (_ , (in₂ k∉km (single {v''} v''∈m) , _)) = absurd (k∉km (∈-cong proj₁ v''∈m))
|
||
|
||
m-mm-subset : subset m (union f m m)
|
||
m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.union-combines u u k,v∈m k,v∈m))
|
||
|
||
module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≈ f b₂ b₁) where
|
||
union-comm : ∀ (m₁ m₂ : Map) → lift (union f m₁ m₂) (union f m₂ m₁)
|
||
union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁)
|
||
where
|
||
union-comm-subset : ∀ (m₁ m₂ : Map) → subset (union f m₁ m₂) (union f m₂ m₁)
|
||
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
||
with Expr-Provenance f f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
|
||
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
|
||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ =
|
||
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
||
... | (_ , (in₁ {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂))
|
||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ =
|
||
(v₁ , (≈-refl , I.union-preserves-∈₂ k∉km₂ v₁∈m₁))
|
||
... | (_ , (in₂ {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂))
|
||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ =
|
||
(v₂ , (≈-refl , I.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁))
|
||
|
||
module _ (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≈ f b₁ (f b₂ b₃)) where
|
||
union-assoc : ∀ (m₁ m₂ m₃ : Map) → lift (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
||
union-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (union-assoc₁ , union-assoc₂)
|
||
where
|
||
union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
||
union-assoc₁ k v k,v∈m₁₂m₃
|
||
with Expr-Provenance f f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
|
||
... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
|
||
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
||
in (v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||
... | (_ , (in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ , v₂∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂∈m₁₂m₃ =
|
||
(v₂ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||
... | (_ , (bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂v₃∈m₁₂m₃ =
|
||
(f v₂ v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||
... | (_ , (in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁∈m₁₂m₃ =
|
||
(v₁ , (≈-refl , I.union-preserves-∈₁ u₁ v₁∈e₁ (I.union-preserves-∉ k∉ke₂ k∉ke₃)))
|
||
... | (_ , (bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₃∈m₁₂m₃ =
|
||
(f v₁ v₃ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||
... | (_ , (in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃)
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂∈m₁₂m₃ =
|
||
(f v₁ v₂ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||
... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃))
|
||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ =
|
||
(f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||
|
||
union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
|
||
union-assoc₂ k v k,v∈m₁m₂₃
|
||
with Expr-Provenance f f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
|
||
... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
|
||
(v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
||
... | (_ , (in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₂∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂∈m₁m₂₃ =
|
||
(v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃))
|
||
... | (_ , (in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₂v₃∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂v₃∈m₁m₂₃ =
|
||
(f v₂ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃))
|
||
... | (_ , (in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ , v₁∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁∈m₁m₂₃ =
|
||
let (k∉ke₂ , k∉ke₃) = I.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃
|
||
in (v₁ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃))
|
||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₁v₃∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₃∈m₁m₂₃ =
|
||
(f v₁ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃))
|
||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₁v₂∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂∈m₁m₂₃ =
|
||
(f v₁ v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃))
|
||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃))
|
||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ =
|
||
(f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
|