agda-spa/Lattice/FiniteMap.agda
Danila Fedorin ca375976b7 Re-export members of isLattice together with the record where needed
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-01-04 22:43:13 -08:00

636 lines
33 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Lattice
open import Relation.Binary.PropositionalEquality as Eq
using (_≡_;refl; sym; trans; cong; subst)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
open import Data.List using (List; _∷_; [])
open import Data.Unit using ()
module Lattice.FiniteMap (A : Set) (B : Set)
{_≈₂_ : B B Set}
{_⊔₂_ : B B B} {_⊓₂_ : B B B}
{{≡-Decidable-A : IsDecidable {_} {A} _≡_}}
{{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} (ks : List A) where
open IsLattice lB using () renaming (_≼_ to _≼₂_)
open import Lattice.Map A B _ as Map
using
( Map
; ⊔-equal-keys
; ⊓-equal-keys
; subset-impl
; Map-functional
; Expr-Provenance
; Expr-Provenance-≡
; `_; __; _∩_
; in₁; in₂; bothᵘ; single
; ⊔-combines
)
renaming
( _≈_ to _≈ᵐ_
; _⊔_ to _⊔ᵐ_
; _⊓_ to _⊓ᵐ_
; ≈-equiv to ≈ᵐ-equiv
; ≈-⊔-cong to ≈ᵐ-⊔ᵐ-cong
; ⊔-assoc to ⊔ᵐ-assoc
; ⊔-comm to ⊔ᵐ-comm
; ⊔-idemp to ⊔ᵐ-idemp
; ≈-⊓-cong to ≈ᵐ-⊓ᵐ-cong
; ⊓-assoc to ⊓ᵐ-assoc
; ⊓-comm to ⊓ᵐ-comm
; ⊓-idemp to ⊓ᵐ-idemp
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
; ≈-Decidable to ≈ᵐ-Decidable
; _[_] to _[_]ᵐ
; []-∈ to []ᵐ-∈
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ to m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ
; locate to locateᵐ
; keys to keysᵐ
; _updating_via_ to _updatingᵐ_via_
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
; updating-via-k∈ks to updatingᵐ-via-k∈ks
; updating-via-k∈ks-≡ to updatingᵐ-via-k∈ks-≡
; updating-via-∈k-forward to updatingᵐ-via-∈k-forward
; updating-via-k∉ks-forward to updatingᵐ-via-k∉ks-forward
; updating-via-k∉ks-backward to updatingᵐ-via-k∉ks-backward
; f'-Monotonic to f'-Monotonicᵐ
; _≼_ to _≼ᵐ_
; ∈k-dec to ∈k-decᵐ
)
open import Data.Empty using (⊥-elim)
open import Data.List using (List; length; []; _∷_; map)
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Properties using (∷-injectiveʳ)
open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.Nat using ()
open import Data.Product using (_×_; _,_; Σ; proj₁; proj₂)
open import Equivalence
open import Function using (_∘_)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Utils using (Pairwise; _∷_; []; Unique; push; empty; All¬-¬Any)
open import Showable using (Showable; show)
open import Isomorphism using (IsInverseˡ; IsInverseʳ)
open import Chain using (Height)
private module WithKeys (ks : List A) where
FiniteMap : Set
FiniteMap = Σ Map (λ m Map.keys m ks)
instance
showable : {{ showableA : Showable A }} {{ showableB : Showable B }}
Showable FiniteMap
showable = record { show = λ (m₁ , _) show m₁ }
_≈_ : FiniteMap FiniteMap Set
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
instance
≈-Decidable : {{ IsDecidable _≈₂_ }} IsDecidable _≈_
≈-Decidable {{≈₂-Decidable}} = record
{ R-dec = λ fm₁ fm₂ IsDecidable.R-dec (≈ᵐ-Decidable {{≈₂-Decidable}})
(proj₁ fm₁) (proj₁ fm₂)
}
_⊔_ : FiniteMap FiniteMap FiniteMap
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
( m₁ ⊔ᵐ m₂
, trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks))))
km₁≡ks
)
_⊓_ : FiniteMap FiniteMap FiniteMap
_⊓_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
( m₁ ⊓ᵐ m₂
, trans (sym (⊓-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks))))
km₁≡ks
)
_∈_ : A × B FiniteMap Set
_∈_ k,v (m₁ , _) = k,v ∈ˡ (proj₁ m₁)
_∈k_ : A FiniteMap Set
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
open Map using (forget) public
∈k-dec = ∈k-decᵐ
locate : {k : A} {fm : FiniteMap} k ∈k fm Σ B (λ v (k , v) fm)
locate {k} {fm = (m , _)} k∈kfm = locateᵐ {k} {m} k∈kfm
_updating_via_ : FiniteMap List A (A B) FiniteMap
_updating_via_ (m₁ , ksm₁≡ks) ks f =
( m₁ updatingᵐ ks via f
, trans (sym (updatingᵐ-via-keys-≡ m₁ ks f)) ksm₁≡ks
)
_[_] : FiniteMap List A List B
_[_] (m₁ , _) ks = m₁ [ ks ]ᵐ
[]-∈ : {k : A} {v : B} {ks' : List A} (fm : FiniteMap)
k ∈ˡ ks' (k , v) fm v ∈ˡ (fm [ ks' ])
[]-∈ {k} {v} {ks'} (m , _) k∈ks' k,v∈fm = []ᵐ-∈ m k,v∈fm k∈ks'
≈-equiv : IsEquivalence FiniteMap _≈_
≈-equiv = record
{ ≈-refl =
λ {(m , _)} IsEquivalence.≈-refl ≈ᵐ-equiv {m}
; ≈-sym =
λ {(m₁ , _)} {(m₂ , _)} IsEquivalence.≈-sym ≈ᵐ-equiv {m₁} {m₂}
; ≈-trans =
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)}
IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
}
open IsEquivalence ≈-equiv public
instance
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
isUnionSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong =
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄
≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) ⊔ᵐ-assoc m₁ m₂ m₃
; ⊔-comm = λ (m₁ , _) (m₂ , _) ⊔ᵐ-comm m₁ m₂
; ⊔-idemp = λ (m , _) ⊔ᵐ-idemp m
}
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
isIntersectSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong =
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄
≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) ⊓ᵐ-assoc m₁ m₂ m₃
; ⊔-comm = λ (m₁ , _) (m₂ , _) ⊓ᵐ-comm m₁ m₂
; ⊔-idemp = λ (m , _) ⊓ᵐ-idemp m
}
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
isLattice = record
{ joinSemilattice = isUnionSemilattice
; meetSemilattice = isIntersectSemilattice
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) absorb-⊔ᵐ-⊓ᵐ m₁ m₂
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) absorb-⊓ᵐ-⊔ᵐ m₁ m₂
}
lattice : Lattice FiniteMap
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
open IsLattice isLattice using (_≼_; ⊔-idemp; ⊔-Monotonicˡ; ⊔-Monotonicʳ) public
m₁≼m₂⇒m₁[k]≼m₂[k] : (fm₁ fm₂ : FiniteMap) {k : A} {v₁ v₂ : B}
fm₁ fm₂ (k , v₁) fm₁ (k , v₂) fm₂ v₁ ≼₂ v₂
m₁≼m₂⇒m₁[k]≼m₂[k] (m₁ , _) (m₂ , _) m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ : (fm₁ fm₂ : FiniteMap) {k : A}
fm₁ fm₂ (k∈kfm₁ : k ∈k fm₁) (k∈kfm₂ : k ∈k fm₂)
proj₁ (locate {fm = fm₁} k∈kfm₁) ≈₂ proj₁ (locate {fm = fm₂} k∈kfm₂)
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ (m₁ , _) (m₂ , _) = m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ m₁ m₂
module GeneralizedUpdate
{l} {L : Set l}
{_≈ˡ_ : L L Set l} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
{{lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
(f : L FiniteMap) (f-Monotonic : Monotonic (IsLattice._≼_ lL) _≼_ f)
(g : A L B) (g-Monotonicʳ : k Monotonic (IsLattice._≼_ lL) _≼₂_ (g k))
(ks : List A) where
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
updater : L A B
updater l k = g k l
f' : L FiniteMap
f' l = (f l) updating ks via (updater l)
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ (proj₁ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
f'-∈k-forward : {k l} k ∈k (f l) k ∈k (f' l)
f'-∈k-forward {k} {l} = updatingᵐ-via-∈k-forward (proj₁ (f l)) ks (updater l)
f'-k∈ks : {k l} k ∈ˡ ks k ∈k (f' l) (k , updater l k) (f' l)
f'-k∈ks {k} {l} = updatingᵐ-via-k∈ks (proj₁ (f l)) (updater l)
f'-k∈ks-≡ : {k v l} k ∈ˡ ks (k , v) (f' l) v updater l k
f'-k∈ks-≡ {k} {v} {l} = updatingᵐ-via-k∈ks-≡ (proj₁ (f l)) (updater l)
f'-k∉ks-forward : {k v l} ¬ k ∈ˡ ks (k , v) (f l) (k , v) (f' l)
f'-k∉ks-forward {k} {v} {l} = updatingᵐ-via-k∉ks-forward (proj₁ (f l)) (updater l)
f'-k∉ks-backward : {k v l} ¬ k ∈ˡ ks (k , v) (f' l) (k , v) (f l)
f'-k∉ks-backward {k} {v} {l} = updatingᵐ-via-k∉ks-backward (proj₁ (f l)) (updater l)
all-equal-keys : (fm₁ fm₂ : FiniteMap) (Map.keys (proj₁ fm₁) Map.keys (proj₁ fm₂))
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
∈k-exclusive : (fm₁ fm₂ : FiniteMap) {k : A} ¬ ((k ∈k fm₁) × (¬ k ∈k fm₂))
∈k-exclusive fm₁ fm₂ {k} (k∈kfm₁ , k∉kfm₂) =
let
k∈kfm₂ = subst (λ l k ∈ˡ l) (all-equal-keys fm₁ fm₂) k∈kfm₁
in
k∉kfm₂ k∈kfm₂
m₁≼m₂⇒m₁[ks]≼m₂[ks] : (fm₁ fm₂ : FiniteMap) (ks' : List A)
fm₁ fm₂ Pairwise _≼₂_ (fm₁ [ ks' ]) (fm₂ [ ks' ])
m₁≼m₂⇒m₁[ks]≼m₂[ks] _ _ [] _ = []
m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁@(m₁ , km₁≡ks) fm₂@(m₂ , km₂≡ks) (k ks'') m₁≼m₂
with ∈k-decᵐ k (proj₁ m₁) | ∈k-decᵐ k (proj₁ m₂)
... | yes k∈km₁ | yes k∈km₂ =
let
(v₁ , k,v₁∈m₁) = locateᵐ {m = m₁} k∈km₁
(v₂ , k,v₂∈m₂) = locateᵐ {m = m₂} k∈km₂
in
(m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂) m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂
... | no k∉km₁ | no k∉km₂ = m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂
... | yes k∈km₁ | no k∉km₂ = ⊥-elim (∈k-exclusive fm₁ fm₂ (k∈km₁ , k∉km₂))
... | no k∉km₁ | yes k∈km₂ = ⊥-elim (∈k-exclusive fm₂ fm₁ (k∈km₂ , k∉km₁))
private
_⊆ᵐ_ : {ks₁ ks₂ : List A} WithKeys.FiniteMap ks₁ WithKeys.FiniteMap ks₂ Set
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
_∈ᵐ_ : {ks : List A} A × B WithKeys.FiniteMap ks Set
_∈ᵐ_ {ks} = WithKeys._∈_ ks
FromBothMaps : (k : A) (v : B) {ks : List A} (fm₁ fm₂ : WithKeys.FiniteMap ks) Set
FromBothMaps k v fm₁ fm₂ =
Σ (B × B)
(λ (v₁ , v₂) ( (v v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
Provenance-union : {ks : List A} (fm₁ fm₂ : WithKeys.FiniteMap ks) {k : A} {v : B}
(k , v) ∈ᵐ (WithKeys._⊔_ ks fm₁ fm₂) FromBothMaps k v fm₁ fm₂
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
with Expr-Provenance-≡ ((` m₁) (` m₂)) k,v∈fm₁fm₂
... | in (single k,v∈m₁) k∉km₂
with k∈km₁ (WithKeys.forget k,v∈m₁)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₂ k∈km₁)
... | in k∉km₁ (single k,v∈m₂)
with k∈km₂ (WithKeys.forget k,v∈m₂)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₁ k∈km₂)
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
private module IterProdIsomorphism where
open WithKeys
open import Data.Unit using (tt)
open import Lattice.Unit using ()
renaming
( _≈_ to _≈ᵘ_
; _⊔_ to _⊔ᵘ_
; _⊓_ to _⊓ᵘ_
; ≈-Decidable to ≈ᵘ-Decidable
; isLattice to isLatticeᵘ
; ≈-equiv to ≈ᵘ-equiv
; fixedHeight to fixedHeightᵘ
)
open import Lattice.IterProd B _
as IP
using (IterProd)
open IsLattice lB using ()
renaming
( ≈-trans to ≈₂-trans
; ≈-sym to ≈₂-sym
; FixedHeight to FixedHeight₂
)
from : {ks : List A} FiniteMap ks IterProd (length ks)
from {[]} (([] , _) , _) = tt
from {k ks'} (((k' , v) fm' , push _ uks') , refl) =
(v , from ((fm' , uks'), refl))
to : {ks : List A} Unique ks IterProd (length ks) FiniteMap ks
to {[]} _ = (([] , empty) , refl)
to {k ks'} (push k≢ks' uks') (v , rest) =
let
((fm' , ufm') , fm'≡ks') = to uks' rest
-- This would be easier if we pattern matched on the equiality proof
-- to get refl, but that makes it harder to reason about 'to' when
-- the arguments are not known to be refl.
k≢fm' = subst (λ ks All (λ k' ¬ k k') ks) (sym fm'≡ks') k≢ks'
kvs≡ks = cong (k ∷_) fm'≡ks'
in
(((k , v) fm' , push k≢fm' ufm') , kvs≡ks)
_≈ⁱᵖ_ : {n : } IterProd n IterProd n Set
_≈ⁱᵖ_ {n} = IP._≈_ {n}
_⊔ⁱᵖ_ : {ks : List A}
IterProd (length ks) IterProd (length ks) IterProd (length ks)
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
to-build : {b : B} {ks : List A} (uks : Unique ks)
let fm = to uks (IP.build b tt (length ks))
in (k : A) (v : B) (k , v) ∈ᵐ fm v b
to-build {b} {k ks'} (push _ uks') k v (here refl) = refl
to-build {b} {k ks'} (push _ uks') k' v (there k',v∈m') =
to-build {ks = ks'} uks' k' v k',v∈m'
-- The left inverse is: from (to x) = x
from-to-inverseˡ : {ks : List A} (uks : Unique ks)
IsInverseˡ (_≈_ ks) (_≈ⁱᵖ_ {length ks})
(from {ks}) (to {ks} uks)
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv {0})
from-to-inverseˡ {k ks'} (push k≢ks' uks') (v , rest)
with ((fm' , ufm') , refl) to uks' rest in p rewrite sym p =
(IsLattice.≈-refl lB , from-to-inverseˡ {ks'} uks' rest)
-- the rewrite here is needed because the IH is in terms of `to uks' rest`,
-- but we end up with the 'unpacked' form (fm', ...). So, put it back
-- in the 'packed' form after we've performed enough inspection
-- to know we take the cons branch of `to`.
-- The map has its own uniqueness proof, but the call to 'to' needs a standalone
-- uniqueness proof too. Work with both proofs as needed to thread things through.
--
-- The right inverse is: to (from x) = x
from-to-inverseʳ : {ks : List A} (uks : Unique ks)
IsInverseʳ (_≈_ ks) (_≈ⁱᵖ_ {length ks})
(from {ks}) (to {ks} uks)
from-to-inverseʳ {[]} _ (([] , empty) , kvs≡ks) rewrite kvs≡ks =
( (λ k v ())
, (λ k v ())
)
from-to-inverseʳ {k ks'} uks@(push _ uks'₁) fm₁@(((k , v) fm'₁ , push _ uks'₂) , refl)
with to uks'₁ (from ((fm'₁ , uks'₂) , refl))
| from-to-inverseʳ {ks'} uks'₁ ((fm'₁ , uks'₂) , refl)
... | ((fm'₂ , ufm'₂) , _)
| (fm'₂⊆fm'₁ , fm'₁⊆fm'₂) = (m₂⊆m₁ , m₁⊆m₂)
where
kvs₁ = (k , v) fm'₁
kvs₂ = (k , v) fm'₂
m₁⊆m₂ : subset-impl kvs₁ kvs₂
m₁⊆m₂ k' v' (here refl) =
(v' , (IsLattice.≈-refl lB , here refl))
m₁⊆m₂ k' v' (there k',v'∈fm'₁) =
let (v'' , (v'≈v'' , k',v''∈fm'₂)) =
fm'₁⊆fm'₂ k' v' k',v'∈fm'₁
in (v'' , (v'≈v'' , there k',v''∈fm'₂))
m₂⊆m₁ : subset-impl kvs₂ kvs₁
m₂⊆m₁ k' v' (here refl) =
(v' , (IsLattice.≈-refl lB , here refl))
m₂⊆m₁ k' v' (there k',v'∈fm'₂) =
let (v'' , (v'≈v'' , k',v''∈fm'₁)) =
fm'₂⊆fm'₁ k' v' k',v'∈fm'₂
in (v'' , (v'≈v'' , there k',v''∈fm'₁))
private
first-key-in-map : {k : A} {ks : List A} (fm : FiniteMap (k ks))
Σ B (λ v (k , v) ∈ᵐ fm)
first-key-in-map (((k , v) _ , _) , refl) = (v , here refl)
from-first-value : {k : A} {ks : List A} (fm : FiniteMap (k ks))
proj₁ (from fm) proj₁ (first-key-in-map fm)
from-first-value {k} {ks} (((k , v) _ , push _ _) , refl) = refl
-- We need pop because reasoning about two distinct 'refl' pattern
-- matches is giving us unification errors. So, stash the 'refl' pattern
-- matching into a helper functions, and write solutions in terms
-- of that.
pop : {k : A} {ks : List A} FiniteMap (k ks) FiniteMap ks
pop (((_ fm') , push _ ufm') , refl) = ((fm' , ufm') , refl)
pop-≈ : {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ks))
_≈_ _ fm₁ fm₂ _≈_ _ (pop fm₁) (pop fm₂)
pop-≈ {k} {ks} fm₁ fm₂ (fm₁⊆fm₂ , fm₂⊆fm₁) =
(narrow fm₁⊆fm₂ , narrow fm₂⊆fm₁)
where
narrow₁ : {fm₁ fm₂ : FiniteMap (k ks)}
fm₁ ⊆ᵐ fm₂ pop fm₁ ⊆ᵐ fm₂
narrow₁ {(_ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈fm'₁ =
kvs₁⊆kvs₂ k' v' (there k',v'∈fm'₁)
narrow₂ : {fm₁ : FiniteMap ks} {fm₂ : FiniteMap (k ks)}
fm₁ ⊆ᵐ fm₂ fm₁ ⊆ᵐ pop fm₂
narrow₂ {fm₁} {fm₂ = (_ fm'₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
with kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
... | (v'' , (v'≈v'' , here refl)) rewrite sym (proj₂ fm₁) =
⊥-elim (All¬-¬Any k≢ks (forget k',v'∈fm'₁))
... | (v'' , (v'≈v'' , there k',v'∈fm'₂)) =
(v'' , (v'≈v'' , k',v'∈fm'₂))
narrow : {fm₁ fm₂ : FiniteMap (k ks)}
fm₁ ⊆ᵐ fm₂ pop fm₁ ⊆ᵐ pop fm₂
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
k,v∈pop⇒k,v∈ : {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ks))
(k' , v) ∈ᵐ pop fm (¬ k k' × ((k' , v) ∈ᵐ fm))
k,v∈pop⇒k,v∈ {k} {ks} {k'} {v} (m@((k , _) fm' , push k≢ks uks') , refl) k',v∈fm =
( (λ { refl All¬-¬Any k≢ks (forget k',v∈fm) })
, there k',v∈fm
)
k,v∈⇒k,v∈pop : {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ks))
¬ k k' (k' , v) ∈ᵐ fm (k' , v) ∈ᵐ pop fm
k,v∈⇒k,v∈pop (m@(_ _ , push k≢ks _) , refl) k≢k' (here refl) = ⊥-elim (k≢k' refl)
k,v∈⇒k,v∈pop (m@(_ _ , push k≢ks _) , refl) k≢k' (there k,v'∈fm') = k,v'∈fm'
pop-⊔-distr : {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ks))
_≈_ _ (pop (_⊔_ _ fm₁ fm₂)) ((_⊔_ _ (pop fm₁) (pop fm₂)))
pop-⊔-distr {k} {ks} fm₁@(m₁ , _) fm₂@(m₂ , _) =
(pfm₁fm₂⊆pfm₁pfm₂ , pfm₁pfm₂⊆pfm₁fm₂)
where
-- pfm₁fm₂⊆pfm₁pfm₂ = {!!}
pfm₁fm₂⊆pfm₁pfm₂ : pop (_⊔_ _ fm₁ fm₂) ⊆ᵐ (_⊔_ _ (pop fm₁) (pop fm₂))
pfm₁fm₂⊆pfm₁pfm₂ k' v' k',v'∈pfm₁fm₂
with (k≢k' , k',v'∈fm₁fm₂) k,v∈pop⇒k,v∈ (_⊔_ _ fm₁ fm₂) k',v'∈pfm₁fm₂
with ((v₁ , v₂) , (refl , (k,v₁∈fm₁ , k,v₂∈fm₂)))
Provenance-union fm₁ fm₂ k',v'∈fm₁fm₂
with k',v₁∈pfm₁ k,v∈⇒k,v∈pop fm₁ k≢k' k,v₁∈fm₁
with k',v₂∈pfm₂ k,v∈⇒k,v∈pop fm₂ k≢k' k,v₂∈fm₂
=
( v₁ ⊔₂ v₂
, (IsLattice.≈-refl lB
, ⊔-combines {m₁ = proj₁ (pop fm₁)}
{m₂ = proj₁ (pop fm₂)}
k',v₁∈pfm₁ k',v₂∈pfm₂
)
)
pfm₁pfm₂⊆pfm₁fm₂ : (_⊔_ _ (pop fm₁) (pop fm₂)) ⊆ᵐ pop (_⊔_ _ fm₁ fm₂)
pfm₁pfm₂⊆pfm₁fm₂ k' v' k',v'∈pfm₁pfm₂
with ((v₁ , v₂) , (refl , (k,v₁∈pfm₁ , k,v₂∈pfm₂)))
Provenance-union (pop fm₁) (pop fm₂) k',v'∈pfm₁pfm₂
with (k≢k' , k',v₁∈fm₁) k,v∈pop⇒k,v∈ fm₁ k,v₁∈pfm₁
with (_ , k',v₂∈fm₂) k,v∈pop⇒k,v∈ fm₂ k,v₂∈pfm₂
=
( v₁ ⊔₂ v₂
, ( IsLattice.≈-refl lB
, k,v∈⇒k,v∈pop (_⊔_ _ fm₁ fm₂) k≢k'
(⊔-combines {m₁ = m₁} {m₂ = m₂}
k',v₁∈fm₁ k',v₂∈fm₂)
)
)
from-rest : {k : A} {ks : List A} (fm : FiniteMap (k ks))
proj₂ (from fm) from (pop fm)
from-rest (((_ fm') , push _ ufm') , refl) = refl
from-preserves-≈ : {ks : List A} {fm₁ fm₂ : FiniteMap ks}
_≈_ _ fm₁ fm₂ (_≈ⁱᵖ_ {length ks}) (from fm₁) (from fm₂)
from-preserves-≈ {[]} {_} {_} _ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-preserves-≈ {k ks'} {fm₁@(m₁ , _)} {fm₂@(m₂ , _)} fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
with first-key-in-map fm₁
| first-key-in-map fm₂
| from-first-value fm₁
| from-first-value fm₂
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
rewrite from-rest fm₁ rewrite from-rest fm₂
=
( v₁≈v₁'
, from-preserves-≈ {ks'} {pop fm₁} {pop fm₂}
(pop-≈ fm₁ fm₂ fm₁≈fm₂)
)
to-preserves-≈ : {ks : List A} (uks : Unique ks) {ip₁ ip₂ : IterProd (length ks)}
_≈ⁱᵖ_ {length ks} ip₁ ip₂ _≈_ _ (to uks ip₁) (to uks ip₂)
to-preserves-≈ {[]} empty {tt} {tt} _ = ((λ k v ()), (λ k v ()))
to-preserves-≈ {k ks'} uks@(push k≢ks' uks') {ip₁@(v₁ , rest₁)} {ip₂@(v₂ , rest₂)} (v₁≈v₂ , rest₁≈rest₂) = (fm₁⊆fm₂ , fm₂⊆fm₁)
where
inductive-step : {v₁ v₂ : B} {rest₁ rest₂ : IterProd (length ks')}
v₁ ≈₂ v₂ _≈ⁱᵖ_ {length ks'} rest₁ rest₂
to uks (v₁ , rest₁) ⊆ᵐ to uks (v₂ , rest₂)
inductive-step {v₁} {v₂} {rest₁} {rest₂} v₁≈v₂ rest₁≈rest₂ k v k,v∈kvs₁
with ((fm'₁ , ufm'₁) , fm'₁≡ks') to uks' rest₁ in p₁
with ((fm'₂ , ufm'₂) , fm'₂≡ks') to uks' rest₂ in p₂
with k,v∈kvs₁
... | here refl = (v₂ , (v₁≈v₂ , here refl))
... | there k,v∈fm'₁ with refl p₁ with refl p₂ =
let
(fm'₁⊆fm'₂ , _) = to-preserves-≈ uks' {rest₁} {rest₂}
rest₁≈rest₂
(v' , (v≈v' , k,v'∈kvs₁)) = fm'₁⊆fm'₂ k v k,v∈fm'₁
in
(v' , (v≈v' , there k,v'∈kvs₁))
fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂
fm₁⊆fm₂ = inductive-step v₁≈v₂ rest₁≈rest₂
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
fm₂⊆fm₁ = inductive-step (≈₂-sym v₁≈v₂)
(IP.≈-sym {length ks'} rest₁≈rest₂)
from-⊔-distr : {ks : List A} (fm₁ fm₂ : FiniteMap ks)
_≈ⁱᵖ_ {length ks} (from (_⊔_ _ fm₁ fm₂))
(_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂))
from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-⊔-distr {k ks} fm₁@(m₁ , _) fm₂@(m₂ , _)
with first-key-in-map (_⊔_ _ fm₁ fm₂)
| first-key-in-map fm₁
| first-key-in-map fm₂
| from-first-value (_⊔_ _ fm₁ fm₂)
| from-first-value fm₁ | from-first-value fm₂
... | (v , k,v∈fm₁fm₂) | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl | refl
with Expr-Provenance k ((` m₁) (` m₂)) (forget k,v∈fm₁fm₂)
... | (_ , (in _ k∉km₂ , _)) = ⊥-elim (k∉km₂ (forget k,v₂∈fm₂))
... | (_ , (in k∉km₁ _ , _)) = ⊥-elim (k∉km₁ (forget k,v₁∈fm₁))
... | (v₁⊔v₂ , (bothᵘ {v₁'} {v₂'} (single k,v₁'∈m₁) (single k,v₂'∈m₂) , k,v₁⊔v₂∈m₁m₂))
rewrite Map-functional {m = m₁} k,v₁∈fm₁ k,v₁'∈m₁
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₂'∈m₂
rewrite Map-functional {m = proj₁ (_⊔_ _ fm₁ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
rewrite from-rest (_⊔_ _ fm₁ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
= ( IsLattice.≈-refl lB
, IsEquivalence.≈-trans
(IP.≈-equiv {length ks})
(from-preserves-≈ {_} {pop (_⊔_ _ fm₁ fm₂)}
{_⊔_ _ (pop fm₁) (pop fm₂)}
(pop-⊔-distr fm₁ fm₂))
((from-⊔-distr (pop fm₁) (pop fm₂)))
)
to-⊔-distr : {ks : List A} (uks : Unique ks) (ip₁ ip₂ : IterProd (length ks))
_≈_ _ (to uks (_⊔ⁱᵖ_ {ks} ip₁ ip₂)) ((_⊔_ _ (to uks ip₁) (to uks ip₂)))
to-⊔-distr {[]} empty tt tt = ((λ k v ()), (λ k v ()))
to-⊔-distr {ks@(k ks')} uks@(push k≢ks' uks') ip₁@(v₁ , rest₁) ip₂@(v₂ , rest₂) = (fm⊆fm₁fm₂ , fm₁fm₂⊆fm)
where
fm₁ = to uks ip₁
fm₁' = to uks' rest₁
fm₂ = to uks ip₂
fm₂' = to uks' rest₂
fm = to uks (_⊔ⁱᵖ_ {k ks'} ip₁ ip₂)
fm⊆fm₁fm₂ : fm ⊆ᵐ (_⊔_ _ fm₁ fm₂)
fm⊆fm₁fm₂ k v (here refl) =
(v₁ ⊔₂ v₂
, (IsLattice.≈-refl lB
, ⊔-combines {k} {v₁} {v₂} {proj₁ fm₁} {proj₁ fm₂}
(here refl) (here refl)
)
)
fm⊆fm₁fm₂ k' v (there k',v∈fm')
with (fm'⊆fm'₁fm'₂ , _) to-⊔-distr uks' rest₁ rest₂
with (v' , (v₁⊔v₂≈v' , k',v'∈fm'₁fm'₂))
fm'⊆fm'₁fm'₂ k' v k',v∈fm'
with (_ , (refl , (v₁∈fm'₁ , v₂∈fm'₂)))
Provenance-union fm₁' fm₂' k',v'∈fm'₁fm'₂ =
( v'
, ( v₁⊔v₂≈v'
, ⊔-combines {m₁ = proj₁ fm₁} {m₂ = proj₁ fm₂}
(there v₁∈fm'₁) (there v₂∈fm'₂)
)
)
fm₁fm₂⊆fm : (_⊔_ _ fm₁ fm₂) ⊆ᵐ fm
fm₁fm₂⊆fm k' v k',v∈fm₁fm₂
with (_ , fm'₁fm'₂⊆fm')
to-⊔-distr uks' rest₁ rest₂
with (_ , (refl , (v₁∈fm₁ , v₂∈fm₂)))
Provenance-union fm₁ fm₂ k',v∈fm₁fm₂
with v₁∈fm₁ | v₂∈fm₂
... | here refl | here refl =
(v , (IsLattice.≈-refl lB , here refl))
... | here refl | there k',v₂∈fm₂' =
⊥-elim (All¬-¬Any k≢ks' (subst (k' ∈ˡ_) (proj₂ fm₂')
(forget k',v₂∈fm₂')))
... | there k',v₁∈fm₁' | here refl =
⊥-elim (All¬-¬Any k≢ks' (subst (k' ∈ˡ_) (proj₂ fm₁')
(forget k',v₁∈fm₁')))
... | there k',v₁∈fm₁' | there k',v₂∈fm₂' =
let
k',v₁v₂∈fm₁'fm₂' =
⊔-combines {m₁ = proj₁ fm₁'} {m₂ = proj₁ fm₂'}
k',v₁∈fm₁' k',v₂∈fm₂'
(v' , (v₁⊔v₂≈v' , v'∈fm')) =
fm'₁fm'₂⊆fm' _ _ k',v₁v₂∈fm₁'fm₂'
in
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
module FixedHeight {ks : List A} {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : } {{fhB : FixedHeight₂ h₂}} (uks : Unique ks) where
import Isomorphism
open Isomorphism.TransportFiniteHeight
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
{f = to uks} {g = from {ks}}
(to-preserves-≈ uks) (from-preserves-≈ {ks})
(to-⊔-distr uks) (from-⊔-distr {ks})
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
using (isFiniteHeightLattice; finiteHeightLattice; fixedHeight) public
-- Helpful lemma: all entries of the 'bottom' map are assigned to bottom.
open Height (IsFiniteHeightLattice.fixedHeight isFiniteHeightLattice) using ()
⊥-contains-bottoms : {k : A} {v : B} (k , v) ∈ᵐ v (Height.⊥ fhB)
⊥-contains-bottoms {k} {v} k,v∈⊥
rewrite IP.⊥-built {length ks} {{fhB = fixedHeightᵘ}} =
to-build uks k v k,v∈⊥
open WithKeys ks public
module FixedHeight = IterProdIsomorphism.FixedHeight