agda-spa/Utils.agda
Danila Fedorin 299938d97e Add decidability proofs for properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 22:25:47 -08:00

169 lines
8.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (Σ; _×_; _,_; proj₁; proj₂)
open import Data.Nat using (; suc)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties using (suc-injective)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_; lose)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; all?; lookup)
open import Data.List.Relation.Unary.All.Properties using (++⁻ˡ; ++⁻ʳ)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there; any?) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary using (Antisymmetric) renaming (Decidable to Decidable²)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no; Dec)
open import Relation.Nullary.Decidable using (¬?)
open import Relation.Unary using (Decidable)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
Decidable-¬ : {p c} {C : Set c} {P : C Set p} Decidable P Decidable (λ x ¬ P x)
Decidable-¬ Decidable-P x = ¬? (Decidable-P x)
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
Unique-append : {c} {C : Set c} {x : C} {xs : List C}
¬ x xs Unique xs Unique (xs ++ (x []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' xs'} x∉xs (push x'≢ uxs') =
push (help x'≢) (Unique-append (λ x∈xs' x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} All (λ x'' ¬ x' x'') l All (λ x'' ¬ x' x'') (l ++ (x []))
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
Unique-++⁻ˡ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique xs
Unique-++⁻ˡ [] Unique-ys = empty
Unique-++⁻ˡ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = push (++⁻ˡ xs {ys = ys} x≢xs++ys) (Unique-++⁻ˡ xs Unique-xs++ys)
Unique-++⁻ʳ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique ys
Unique-++⁻ʳ [] Unique-ys = Unique-ys
Unique-++⁻ʳ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = Unique-++⁻ʳ xs Unique-xs++ys
Unique-∈-++ˡ : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs ¬ x ys
Unique-∈-++ˡ [] _ ()
Unique-∈-++ˡ {x = x} (x' xs) (push x≢xs++ys _) (here refl) = All¬-¬Any (++⁻ʳ xs x≢xs++ys)
Unique-∈-++ˡ {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-∈-++ˡ xs Unique-xs++ys x̷∈xs
Unique-narrow : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs Unique (x ys)
Unique-narrow [] _ ()
Unique-narrow {x = x} (x' xs) (push x≢xs++ys Unique-xs++ys) (here refl) = push (++⁻ʳ xs x≢xs++ys) (Unique-++⁻ʳ xs Unique-xs++ys)
Unique-narrow {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-narrow xs Unique-xs++ys x̷∈xs
All-≢-map : {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
All (λ x' ¬ x x') xs All (λ y' ¬ (f x) y') (mapˡ f xs)
All-≢-map x f f-Injecitve [] = []
All-≢-map x {x' xs'} f f-Injecitve (x≢x' x≢xs') = (λ fx≡fx' x≢x' (f-Injecitve fx≡fx')) All-≢-map x f f-Injecitve x≢xs'
Unique-map : {c d} {C : Set c} {D : Set d} {l : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
Unique l Unique (mapˡ f l)
Unique-map {l = []} _ _ _ = empty
Unique-map {l = x xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs)
¬Any-map : {p₁ p₂ c} {C : Set c} {P₁ : C Set p₁} {P₂ : C Set p₂} {l : List C} ( {x} P₁ x P₂ x) ¬ Any P₂ l ¬ Any P₁ l
¬Any-map f ¬Any-P₂ Any-P₁ = ¬Any-P₂ (Any.map f Any-P₁)
All-single : {p c} {C : Set c} {P : C Set p} {c : C} {l : List C} All P l c l P c
All-single {c = c} {l = x xs} (p ps) (here refl) = p
All-single {c = c} {l = x xs} (p ps) (there c∈xs) = All-single ps c∈xs
All-x∈xs : {a} {A : Set a} (xs : List A) All (λ x x xs) xs
All-x∈xs [] = []
All-x∈xs (x xs') = here refl map there (All-x∈xs xs')
x∈xs⇒fx∈fxs : {a b} {A : Set a} {B : Set b} (f : A B) {x : A} {xs : List A}
x xs (f x) mapˡ f xs
x∈xs⇒fx∈fxs f (here refl) = here refl
x∈xs⇒fx∈fxs f (there x∈xs') = there (x∈xs⇒fx∈fxs f x∈xs')
iterate : {a} {A : Set a} (n : ) (f : A A) A A
iterate 0 _ a = a
iterate (suc n) f a = f (iterate n f a)
data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A B Set c) : List A List B Set (a ⊔ℓ b ⊔ℓ c) where
[] : Pairwise P [] []
_∷_ : {x : A} {y : B} {xs : List A} {ys : List B}
P x y Pairwise P xs ys
Pairwise P (x xs) (y ys)
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)
concat-∈ : {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)}
x l l ls x foldr _++_ [] ls
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
concat-∈ {ls = l' ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
filter-++ : {a p} {A : Set a} (l₁ l₂ : List A) {P : A Set p} (P? : Decidable P)
filter P? (l₁ ++ l₂) filter P? l₁ ++ filter P? l₂
filter-++ [] l₂ P? = refl
filter-++ (x xs) l₂ P?
with P? x
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
... | no _ = (filter-++ xs l₂ P?)
_⇒_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
_⇒_ P Q = a P a Q a
__ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
__ P Q a = P a Q a
_∧_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
_∧_ P Q a = P a × Q a
it : {a} {A : Set a} {{_ : A}} A
it {{x}} = x
z≢sf : {n : } (f : Fin n) ¬ (Fin.zero Fin.suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
fins : (n : ) Σ (List (Fin n)) Unique
fins 0 = ([] , empty)
fins (suc n') =
let
(inds' , unids') = fins n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
fins-complete : (n : ) (f : Fin n) f (proj₁ (fins n))
fins-complete (suc n') zero = here refl
fins-complete (suc n') (suc f') = there (x∈xs⇒fx∈fxs suc (fins-complete n' f'))
findUniversal : {p c} {C : Set c} {R : C C Set p} (l : List C) Decidable² R
Dec (Any (λ x All (R x) l) l)
findUniversal l Rdec = any? (λ x all? (Rdec x) l) l
findUniversal-unique : {p c} {C : Set c} (R : C C Set p) (l : List C)
Antisymmetric _≡_ R
x₁ x₂ x₁ l x₂ l All (R x₁) l All (R x₂) l
x₁ x₂
findUniversal-unique R l Rantisym x₁ x₂ x₁∈l x₂∈l Allx₁ Allx₂ = Rantisym (lookup Allx₁ x₂∈l) (lookup Allx₂ x₁∈l)