368 lines
15 KiB
Agda
368 lines
15 KiB
Agda
module Lattice where
|
||
|
||
open import Chain using (Chain; Height; done; step; concat)
|
||
open import Equivalence
|
||
|
||
import Data.Nat.Properties as NatProps
|
||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||
open import Relation.Binary.Definitions
|
||
open import Relation.Nullary using (Dec; ¬_)
|
||
open import Data.Nat as Nat using (ℕ; _≤_; _+_)
|
||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||
open import Function.Definitions using (Injective)
|
||
|
||
record IsDecidable {a} (A : Set a) (R : A → A → Set a) : Set a where
|
||
field
|
||
R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||
|
||
record IsSemilattice {a} (A : Set a)
|
||
(_≈_ : A → A → Set a)
|
||
(_⊔_ : A → A → A) : Set a where
|
||
|
||
_≼_ : A → A → Set a
|
||
a ≼ b = Σ A (λ c → (a ⊔ c) ≈ b)
|
||
|
||
_≺_ : A → A → Set a
|
||
a ≺ b = (a ≼ b) × (¬ a ≈ b)
|
||
|
||
field
|
||
≈-equiv : IsEquivalence A _≈_
|
||
|
||
⊔-assoc : (x y z : A) → ((x ⊔ y) ⊔ z) ≈ (x ⊔ (y ⊔ z))
|
||
⊔-comm : (x y : A) → (x ⊔ y) ≈ (y ⊔ x)
|
||
⊔-idemp : (x : A) → (x ⊔ x) ≈ x
|
||
|
||
≼-refl : ∀ (a : A) → a ≼ a
|
||
≼-refl a = (a , ⊔-idemp a)
|
||
|
||
open IsEquivalence ≈-equiv public
|
||
|
||
record IsLattice {a} (A : Set a)
|
||
(_≈_ : A → A → Set a)
|
||
(_⊔_ : A → A → A)
|
||
(_⊓_ : A → A → A) : Set a where
|
||
|
||
field
|
||
joinSemilattice : IsSemilattice A _≈_ _⊔_
|
||
meetSemilattice : IsSemilattice A _≈_ _⊓_
|
||
|
||
absorb-⊔-⊓ : (x y : A) → (x ⊔ (x ⊓ y)) ≈ x
|
||
absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x
|
||
|
||
open IsSemilattice joinSemilattice public
|
||
open IsSemilattice meetSemilattice public using () renaming
|
||
( ⊔-assoc to ⊓-assoc
|
||
; ⊔-comm to ⊓-comm
|
||
; ⊔-idemp to ⊓-idemp
|
||
; _≼_ to _≽_
|
||
; _≺_ to _≻_
|
||
; ≼-refl to ≽-refl
|
||
)
|
||
|
||
record IsFiniteHeightLattice {a} (A : Set a)
|
||
(h : ℕ)
|
||
(_≈_ : A → A → Set a)
|
||
(_⊔_ : A → A → A)
|
||
(_⊓_ : A → A → A) : Set (lsuc a) where
|
||
|
||
field
|
||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||
fixedHeight : Height (IsLattice._≺_ isLattice) h
|
||
|
||
open IsLattice isLattice public
|
||
|
||
module _ {a b} {A : Set a} {B : Set b}
|
||
(_≼₁_ : A → A → Set a) (_≼₂_ : B → B → Set b) where
|
||
|
||
Monotonic : (A → B) → Set (a ⊔ℓ b)
|
||
Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂
|
||
|
||
module ChainMapping {a b} {A : Set a} {B : Set b}
|
||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||
|
||
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_)
|
||
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_)
|
||
|
||
Chain-map : ∀ (f : A → B) → Monotonic _≼₁_ _≼₂_ f → Injective _≈₁_ _≈₂_ f →
|
||
∀ {a₁ a₂ : A} {n : ℕ} → Chain _≺₁_ a₁ a₂ n → Chain _≺₂_ (f a₁) (f a₂) n
|
||
Chain-map f Monotonicᶠ Injectiveᶠ done = done
|
||
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) =
|
||
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa → a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
|
||
in step fa₁≺₂fa (Chain-map f Monotonicᶠ Injectiveᶠ aa₂)
|
||
|
||
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||
field
|
||
_≈_ : A → A → Set a
|
||
_⊔_ : A → A → A
|
||
|
||
isSemilattice : IsSemilattice A _≈_ _⊔_
|
||
|
||
open IsSemilattice isSemilattice public
|
||
|
||
|
||
record Lattice {a} (A : Set a) : Set (lsuc a) where
|
||
field
|
||
_≈_ : A → A → Set a
|
||
_⊔_ : A → A → A
|
||
_⊓_ : A → A → A
|
||
|
||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||
|
||
open IsLattice isLattice public
|
||
|
||
module IsSemilatticeInstances where
|
||
module ForNat where
|
||
open Nat
|
||
open NatProps
|
||
open Eq
|
||
|
||
NatIsMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_
|
||
NatIsMaxSemilattice = record
|
||
{ ≈-equiv = record
|
||
{ ≈-refl = refl
|
||
; ≈-sym = sym
|
||
; ≈-trans = trans
|
||
}
|
||
; ⊔-assoc = ⊔-assoc
|
||
; ⊔-comm = ⊔-comm
|
||
; ⊔-idemp = ⊔-idem
|
||
}
|
||
|
||
NatIsMinSemilattice : IsSemilattice ℕ _≡_ _⊓_
|
||
NatIsMinSemilattice = record
|
||
{ ≈-equiv = record
|
||
{ ≈-refl = refl
|
||
; ≈-sym = sym
|
||
; ≈-trans = trans
|
||
}
|
||
; ⊔-assoc = ⊓-assoc
|
||
; ⊔-comm = ⊓-comm
|
||
; ⊔-idemp = ⊓-idem
|
||
}
|
||
|
||
module ForProd {a} {A B : Set a}
|
||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||
(sA : IsSemilattice A _≈₁_ _⊔₁_) (sB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||
|
||
open Eq
|
||
open Data.Product
|
||
|
||
module ProdEquiv = IsEquivalenceInstances.ForProd _≈₁_ _≈₂_ (IsSemilattice.≈-equiv sA) (IsSemilattice.≈-equiv sB)
|
||
open ProdEquiv using (_≈_) public
|
||
|
||
infixl 20 _⊔_
|
||
|
||
_⊔_ : A × B → A × B → A × B
|
||
(a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂)
|
||
|
||
ProdIsSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
||
ProdIsSemilattice = record
|
||
{ ≈-equiv = ProdEquiv.ProdEquivalence
|
||
; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) →
|
||
( IsSemilattice.⊔-assoc sA a₁ a₂ a₃
|
||
, IsSemilattice.⊔-assoc sB b₁ b₂ b₃
|
||
)
|
||
; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsSemilattice.⊔-comm sA a₁ a₂
|
||
, IsSemilattice.⊔-comm sB b₁ b₂
|
||
)
|
||
; ⊔-idemp = λ (a , b) →
|
||
( IsSemilattice.⊔-idemp sA a
|
||
, IsSemilattice.⊔-idemp sB b
|
||
)
|
||
}
|
||
|
||
module ForMap {a} {A B : Set a}
|
||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||
(_≈₂_ : B → B → Set a)
|
||
(_⊔₂_ : B → B → B)
|
||
(sB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||
|
||
open import Map A B ≡-dec-A
|
||
open IsSemilattice sB renaming
|
||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym
|
||
; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp
|
||
)
|
||
|
||
module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB)
|
||
open MapEquiv using (_≈_) public
|
||
|
||
infixl 20 _⊔_
|
||
infixl 20 _⊓_
|
||
|
||
_⊔_ : Map → Map → Map
|
||
m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂
|
||
|
||
_⊓_ : Map → Map → Map
|
||
m₁ ⊓ m₂ = intersect _⊔₂_ m₁ m₂
|
||
|
||
MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_
|
||
MapIsUnionSemilattice = record
|
||
{ ≈-equiv = MapEquiv.LiftEquivalence
|
||
; ⊔-assoc = union-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc
|
||
; ⊔-comm = union-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm
|
||
; ⊔-idemp = union-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp
|
||
}
|
||
|
||
MapIsIntersectSemilattice : IsSemilattice Map _≈_ _⊓_
|
||
MapIsIntersectSemilattice = record
|
||
{ ≈-equiv = MapEquiv.LiftEquivalence
|
||
; ⊔-assoc = intersect-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc
|
||
; ⊔-comm = intersect-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm
|
||
; ⊔-idemp = intersect-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp
|
||
}
|
||
|
||
module IsLatticeInstances where
|
||
module ForNat where
|
||
open Nat
|
||
open NatProps
|
||
open Eq
|
||
open IsSemilatticeInstances.ForNat
|
||
open Data.Product
|
||
|
||
private
|
||
max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z
|
||
max-bound₁ {x} {y} {z} x⊔y≡z
|
||
rewrite sym x⊔y≡z
|
||
rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl)
|
||
|
||
min-bound₁ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ x
|
||
min-bound₁ {x} {y} {z} x⊓y≡z
|
||
rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl)
|
||
|
||
minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x
|
||
minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
|
||
where
|
||
x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl
|
||
x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl)
|
||
|
||
-- >:(
|
||
helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y)
|
||
helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y
|
||
|
||
maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x
|
||
maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
|
||
where
|
||
x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl
|
||
x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl)
|
||
|
||
-- >:(
|
||
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
||
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
|
||
|
||
NatIsLattice : IsLattice ℕ _≡_ _⊔_ _⊓_
|
||
NatIsLattice = record
|
||
{ joinSemilattice = NatIsMaxSemilattice
|
||
; meetSemilattice = NatIsMinSemilattice
|
||
; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
|
||
; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
|
||
}
|
||
|
||
module ForProd {a} {A B : Set a}
|
||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||
|
||
module ProdJoin = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ (IsLattice.joinSemilattice lA) (IsLattice.joinSemilattice lB)
|
||
open ProdJoin using (_⊔_; _≈_) public
|
||
|
||
module ProdMeet = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊓₁_ _⊓₂_ (IsLattice.meetSemilattice lA) (IsLattice.meetSemilattice lB)
|
||
open ProdMeet using () renaming (_⊔_ to _⊓_) public
|
||
|
||
ProdIsLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
|
||
ProdIsLattice = record
|
||
{ joinSemilattice = ProdJoin.ProdIsSemilattice
|
||
; meetSemilattice = ProdMeet.ProdIsSemilattice
|
||
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
|
||
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
|
||
)
|
||
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
|
||
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
|
||
)
|
||
}
|
||
|
||
module ForMap {a} {A B : Set a}
|
||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||
(_≈₂_ : B → B → Set a)
|
||
(_⊔₂_ : B → B → B)
|
||
(_⊓₂_ : B → B → B)
|
||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||
|
||
open import Map A B ≡-dec-A
|
||
open IsLattice lB renaming
|
||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym
|
||
; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp
|
||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||
)
|
||
|
||
module MapJoin = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊔₂_ (IsLattice.joinSemilattice lB)
|
||
open MapJoin using (_⊔_; _≈_) public
|
||
|
||
module MapMeet = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊓₂_ (IsLattice.meetSemilattice lB)
|
||
open MapMeet using (_⊓_) public
|
||
|
||
MapIsLattice : IsLattice Map _≈_ _⊔_ _⊓_
|
||
MapIsLattice = record
|
||
{ joinSemilattice = MapJoin.MapIsUnionSemilattice
|
||
; meetSemilattice = MapMeet.MapIsIntersectSemilattice
|
||
; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||
; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||
}
|
||
|
||
module IsFiniteHeightLatticeInstances where
|
||
module ForProd {a} {A B : Set a}
|
||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||
(h₁ h₂ : ℕ)
|
||
(lA : IsFiniteHeightLattice A h₁ _≈₁_ _⊔₁_ _⊓₁_) (lB : IsFiniteHeightLattice B h₂ _≈₂_ _⊔₂_ _⊓₂_) where
|
||
|
||
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
||
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
||
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_)
|
||
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_)
|
||
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_)
|
||
|
||
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||
|
||
private
|
||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
||
|
||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||
∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b))
|
||
|
||
amin : A
|
||
amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
||
|
||
amax : A
|
||
amax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
||
|
||
bmin : B
|
||
bmin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
||
|
||
bmax : B
|
||
bmax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
||
|
||
ProdIsFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||
ProdIsFiniteHeightLattice = record
|
||
{ isLattice = ProdLattice.ProdIsLattice
|
||
; fixedHeight =
|
||
( ( ((amin , bmin) , (amax , bmax))
|
||
, concat _≺_
|
||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
||
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
||
)
|
||
, _
|
||
)
|
||
}
|