25 líneas
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Agda
		
	
	
	
	
	
			
		
		
	
	
			25 líneas
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Agda
		
	
	
	
	
	
module Chain where
 | 
						||
 | 
						||
open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_)
 | 
						||
open import Data.Product using (_×_; Σ; _,_)
 | 
						||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
 | 
						||
 | 
						||
module _ {a} {A : Set a} (_R_ : A → A → Set a) where
 | 
						||
 | 
						||
    data Chain : A → A → ℕ → Set a where
 | 
						||
        done : ∀ {a : A} → Chain a a 0
 | 
						||
        step : ∀ {a₁ a₂ a₃ : A} {n : ℕ} → a₁ R a₂ → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
 | 
						||
 | 
						||
    concat : ∀ {a₁ a₂ a₃ : A} {n₁ n₂ : ℕ} → Chain a₁ a₂ n₁ → Chain a₂ a₃ n₂ → Chain a₁ a₃ (n₁ + n₂)
 | 
						||
    concat done a₂a₃ = a₂a₃
 | 
						||
    concat (step a₁Ra aa₂) a₂a₃ = step a₁Ra (concat aa₂ a₂a₃)
 | 
						||
 | 
						||
    empty-≡ : ∀ {a₁ a₂ : A} → Chain a₁ a₂ 0 → a₁ ≡ a₂
 | 
						||
    empty-≡ done = refl
 | 
						||
 | 
						||
    Bounded : ℕ → Set a
 | 
						||
    Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
 | 
						||
 | 
						||
    Height : ℕ → Set a
 | 
						||
    Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)
 |