144 lines
8.3 KiB
Agda
144 lines
8.3 KiB
Agda
open import Language hiding (_[_])
|
||
open import Lattice
|
||
|
||
module Analysis.Forward
|
||
{L : Set} {h}
|
||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||
|
||
open import Data.Empty using (⊥-elim)
|
||
open import Data.String using (String)
|
||
open import Data.Product using (_,_)
|
||
open import Data.List using (_∷_; []; foldr; foldl)
|
||
open import Data.List.Relation.Unary.Any as Any using ()
|
||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
|
||
open import Relation.Nullary using (yes; no)
|
||
open import Function using (_∘_; flip)
|
||
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||
using () renaming (isLattice to isLatticeˡ)
|
||
|
||
module WithProg (prog : Program) where
|
||
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||
open Program prog
|
||
|
||
private module WithStmtEvaluator {{evaluator : StmtEvaluator}} where
|
||
open StmtEvaluator evaluator
|
||
|
||
updateVariablesForState : State → StateVariables → VariableValues
|
||
updateVariablesForState s sv =
|
||
foldl (flip (eval s)) (variablesAt s sv) (code s)
|
||
|
||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
|
||
let
|
||
bss = code s
|
||
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
|
||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||
in
|
||
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
|
||
(flip (eval s)) (eval-Monoʳ s)
|
||
vs₁≼vs₂
|
||
|
||
open StateVariablesFiniteMap.GeneralizedUpdate isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||
using ()
|
||
renaming
|
||
( f' to updateAll
|
||
; f'-Monotonic to updateAll-Mono
|
||
; f'-k∈ks-≡ to updateAll-k∈ks-≡
|
||
)
|
||
public
|
||
|
||
-- Finally, the whole analysis consists of getting the 'join'
|
||
-- of all incoming states, then applying the per-state evaluation
|
||
-- function. This is just a composition, and is trivially monotonic.
|
||
|
||
analyze : StateVariables → StateVariables
|
||
analyze = updateAll ∘ joinAll
|
||
|
||
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
|
||
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
|
||
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
|
||
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||
|
||
-- The fixed point of the 'analyze' function is our final goal.
|
||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||
using ()
|
||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||
public
|
||
|
||
variablesAt-updateAll : ∀ (s : State) (sv : StateVariables) →
|
||
variablesAt s (updateAll sv) ≡ updateVariablesForState s sv
|
||
variablesAt-updateAll s sv
|
||
with (vs , s,vs∈usv) ← locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
|
||
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||
|
||
module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
|
||
{{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} where
|
||
open ValidStmtEvaluator validEvaluator
|
||
|
||
eval-fold-valid : ∀ {s bss vs ρ₁ ρ₂} → ρ₁ , bss ⇒ᵇˢ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂
|
||
eval-fold-valid {_} [] ⟦vs⟧ρ = ⟦vs⟧ρ
|
||
eval-fold-valid {s} {bs ∷ bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ∷ ρ,bss'⇒ρ₂) ⟦vs⟧ρ₁ =
|
||
eval-fold-valid
|
||
{bss = bss'} {eval s bs vs} ρ,bss'⇒ρ₂
|
||
(valid ρ₁,bs⇒ρ ⟦vs⟧ρ₁)
|
||
|
||
updateVariablesForState-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ updateVariablesForState s sv ⟧ᵛ ρ₂
|
||
updateVariablesForState-matches = eval-fold-valid
|
||
|
||
updateAll-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
|
||
updateAll-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||
rewrite variablesAt-updateAll s sv =
|
||
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||
|
||
stepTrace : ∀ {s₁ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s₁ result ⟧ᵛ ρ₂
|
||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂ =
|
||
let
|
||
-- I'd use rewrite, but Agda gets a memory overflow (?!).
|
||
⟦joinAll-result⟧ρ₁ =
|
||
subst (λ vs → ⟦ vs ⟧ᵛ ρ₁)
|
||
(sym (variablesAt-joinAll s₁ result))
|
||
⟦joinForKey-s₁⟧ρ₁
|
||
⟦analyze-result⟧ρ₂ =
|
||
updateAll-matches {sv = joinAll result}
|
||
ρ₁,bss⇒ρ₂ ⟦joinAll-result⟧ρ₁
|
||
analyze-result≈result =
|
||
≈ᵐ-sym {result} {updateAll (joinAll result)}
|
||
result≈analyze-result
|
||
analyze-s₁≈s₁ =
|
||
variablesAt-≈ s₁ (updateAll (joinAll result))
|
||
result (analyze-result≈result)
|
||
in
|
||
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ₂
|
||
|
||
walkTrace : ∀ {s₁ s₂ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → Trace {graph} s₁ s₂ ρ₁ ρ₂ → ⟦ variablesAt s₂ result ⟧ᵛ ρ₂
|
||
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-single ρ₁,bss⇒ρ₂) =
|
||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂
|
||
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
|
||
let
|
||
⟦result-s₁⟧ρ =
|
||
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ
|
||
s₁∈incomingStates =
|
||
[]-∈ result (edge⇒incoming s₁→s₂)
|
||
(variablesAt-∈ s₁ result)
|
||
⟦joinForKey-s⟧ρ =
|
||
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
|
||
in
|
||
walkTrace ⟦joinForKey-s⟧ρ tr
|
||
|
||
joinForKey-initialState-⊥ᵛ : joinForKey initialState result ≡ ⊥ᵛ
|
||
joinForKey-initialState-⊥ᵛ = cong (λ ins → foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅
|
||
|
||
⟦joinAll-initialState⟧ᵛ∅ : ⟦ joinForKey initialState result ⟧ᵛ []
|
||
⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs → ⟦ vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅
|
||
|
||
analyze-correct : ∀ {ρ : Env} → [] , rootStmt ⇒ˢ ρ → ⟦ variablesAt finalState result ⟧ᵛ ρ
|
||
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)
|
||
|
||
open WithStmtEvaluator using (result; analyze; result≈analyze-result) public
|
||
open WithStmtEvaluator.WithValidInterpretation using (analyze-correct) public
|