agda-spa/Analysis/Forward.agda
Danila Fedorin 4da9b6d3cd Fuse 'FiniteMap' and 'FiniteValueMap'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-12-31 19:21:23 -08:00

144 lines
8.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Language hiding (_[_])
open import Lattice
module Analysis.Forward
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_) where
open import Data.Empty using (⊥-elim)
open import Data.String using (String)
open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_; flip)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using () renaming (isLattice to isLatticeˡ)
module WithProg (prog : Program) where
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
open Program prog
private module WithStmtEvaluator {{evaluator : StmtEvaluator}} where
open StmtEvaluator evaluator
updateVariablesForState : State StateVariables VariableValues
updateVariablesForState s sv =
foldl (flip (eval s)) (variablesAt s sv) (code s)
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
let
bss = code s
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
(flip (eval s)) (eval-Monoʳ s)
vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
using ()
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
; f'-k∈ks-≡ to updateAll-k∈ks-≡
)
public
-- Finally, the whole analysis consists of getting the 'join'
-- of all incoming states, then applying the per-state evaluation
-- function. This is just a composition, and is trivially monotonic.
analyze : StateVariables StateVariables
analyze = updateAll joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
public
variablesAt-updateAll : (s : State) (sv : StateVariables)
variablesAt s (updateAll sv) updateVariablesForState s sv
variablesAt-updateAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} where
open ValidStmtEvaluator validEvaluator
eval-fold-valid : {s bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂
eval-fold-valid {_} [] ⟦vs⟧ρ = ⟦vs⟧ρ
eval-fold-valid {s} {bs bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ρ,bss'⇒ρ₂) ⟦vs⟧ρ =
eval-fold-valid
{bss = bss'} {eval s bs vs} ρ,bss'⇒ρ₂
(valid ρ₁,bs⇒ρ ⟦vs⟧ρ)
updateVariablesForState-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ updateVariablesForState s sv ⟧ᵛ ρ₂
updateVariablesForState-matches = eval-fold-valid
updateAll-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
updateAll-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
rewrite variablesAt-updateAll s sv =
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
stepTrace : {s₁ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ variablesAt s₁ result ⟧ᵛ ρ₂
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ =
let
-- I'd use rewrite, but Agda gets a memory overflow (?!).
⟦joinAll-result⟧ρ =
subst (λ vs vs ⟧ᵛ ρ₁)
(sym (variablesAt-joinAll s₁ result))
⟦joinForKey-s₁⟧ρ
⟦analyze-result⟧ρ =
updateAll-matches {sv = joinAll result}
ρ₁,bss⇒ρ ⟦joinAll-result⟧ρ
analyze-result≈result =
≈ᵐ-sym {result} {updateAll (joinAll result)}
result≈analyze-result
analyze-s₁≈s₁ =
variablesAt-≈ s₁ (updateAll (joinAll result))
result (analyze-result≈result)
in
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ
walkTrace : {s₁ s₂ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ Trace {graph} s₁ s₂ ρ₁ ρ₂ variablesAt s₂ result ⟧ᵛ ρ₂
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-single ρ₁,bss⇒ρ) =
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
let
⟦result-s₁⟧ρ =
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
s₁∈incomingStates =
[]-∈ result (edge⇒incoming s₁→s₂)
(variablesAt-∈ s₁ result)
⟦joinForKey-s⟧ρ =
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
in
walkTrace ⟦joinForKey-s⟧ρ tr
joinForKey-initialState-⊥ᵛ : joinForKey initialState result ⊥ᵛ
joinForKey-initialState-⊥ᵛ = cong (λ ins foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅
⟦joinAll-initialState⟧ᵛ∅ : joinForKey initialState result ⟧ᵛ []
⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅
analyze-correct : {ρ : Env} [] , rootStmt ⇒ˢ ρ variablesAt finalState result ⟧ᵛ ρ
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)
open WithStmtEvaluator using (result; analyze; result≈analyze-result) public
open WithStmtEvaluator.WithValidInterpretation using (analyze-correct) public