agda-spa/Language.agda

491 lines
23 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Language where
open import Data.Nat using (; suc; pred; _≤_) renaming (_+_ to _+ⁿ_)
open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive; +-assoc; +-comm)
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ)
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.List.Relation.Unary.Any.Properties using (++⁺ʳ)
open import Data.Fin using (Fin; suc; zero; from; inject₁; inject≤; _↑ʳ_; _↑ˡ_) renaming (_≟_ to _≟ᶠ_; cast to castᶠ)
open import Data.Fin.Properties using (suc-injective)
open import Relation.Binary.PropositionalEquality as Eq using (subst; cong; _≡_; sym; trans; refl)
open import Relation.Nullary using (¬_)
open import Function using (_∘_)
open Eq.≡-Reasoning using (begin_; step-≡; _∎)
open import Lattice
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
data Expr : Set where
_+_ : Expr → Expr → Expr
_-_ : Expr → Expr → Expr
`_ : String → Expr
#_ : → Expr
data BasicStmt : Set where
_←_ : String → Expr → BasicStmt
noop : BasicStmt
data Stmt : Set where
⟨_⟩ : BasicStmt → Stmt
_then_ : Stmt → Stmt → Stmt
if_then_else_ : Expr → Stmt → Stmt → Stmt
while_repeat_ : Expr → Stmt → Stmt
module Semantics where
data Value : Set where
↑ᶻ : → Value
Env : Set
Env = List (String × Value)
data _∈_ : (String × Value) → Env → Set where
here : ∀ (s : String) (v : Value) (ρ : Env) → (s , v) ∈ ((s , v) ∷ ρ)
there : ∀ (s s' : String) (v v' : Value) (ρ : Env) → ¬ (s ≡ s') → (s , v) ∈ ρ → (s , v) ∈ ((s' , v') ∷ ρ)
data _,_⇒ᵉ_ : Env → Expr → Value → Set where
⇒ᵉ- : ∀ (ρ : Env) (n : ) → ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
⇒ᵉ-Var : ∀ (ρ : Env) (x : String) (v : Value) → (x , v) ∈ ρρ , (` x) ⇒ᵉ v
⇒ᵉ-+ : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ) →
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
⇒ᵉ-- : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ) →
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
data _,_⇒ᵇ_ : Env → BasicStmt → Env → Set where
⇒ᵇ-noop : ∀ (ρ : Env) → ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : ∀ (ρ : Env) (x : String) (e : Expr) (v : Value) →
ρ , e ⇒ᵉ v → ρ , (x ← e) ⇒ᵇ ((x , v) ∷ ρ)
data _,_⇒ˢ_ : Env → Stmt → Env → Set where
⇒ˢ-⟨⟩ : ∀ (ρ₁ ρ₂ : Env) (bs : BasicStmt) →
ρ₁ , bs ⇒ᵇ ρ₂ → ρ₁ , ⟨ bs ⟩ ⇒ˢ ρ₂
⇒ˢ-then : ∀ (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt) →
ρ₁ , s₁ ⇒ˢ ρ₂ → ρ₂ , s₂ ⇒ˢ ρ₃ →
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
⇒ˢ-if-true : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (z : ) (s₁ s₂ : Stmt) →
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s₁ ⇒ˢ ρ₂ →
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-if-false : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt) →
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) → ρ₁ , s₂ ⇒ˢ ρ₂ →
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-while-true : ∀ (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ) (s : Stmt) →
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s ⇒ˢ ρ₂ → ρ₂ , (while e repeat s) ⇒ˢ ρ₃ →
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
⇒ˢ-while-false : ∀ (ρ : Env) (e : Expr) (s : Stmt) →
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
ρ , (while e repeat s) ⇒ˢ ρ
module Graphs where
open Semantics
record Graph : Set where
constructor MkGraph
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where
constructor Mk-⊆
field
n :
sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
g₁[]≡g₂[] : ∀ (idx : Graph.Index g₁) →
lookup (Graph.nodes g₁) idx ≡
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
e∈g₁⇒e∈g₂ : ∀ (e : Graph.Edge g₁) →
e ∈ˡ (Graph.edges g₁) →
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
flatten-casts : ∀ {s₁ s₂ s₃ n₁ n₂ : }
(p : s₂ +ⁿ n₂ ≡ s₃) (q : s₁ +ⁿ n₁ ≡ s₂) (r : s₁ +ⁿ (n₁ +ⁿ n₂) ≡ s₃)
(idx : Fin s₁) →
castᶠ p ((castᶠ q (idx ↑ˡ n₁)) ↑ˡ n₂) ≡ castᶠ r (idx ↑ˡ (n₁ +ⁿ n₂))
flatten-casts refl refl r zero = refl
flatten-casts {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
rewrite flatten-casts refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl g₁[]≡g₂[] e∈g₁⇒e∈g₂) (Mk-⊆ n₂ p₂@refl g₂[]≡g₃[] e∈g₂⇒e∈g₃) = record
{ n = n₁ +ⁿ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
-- ; g₁[]≡g₂[] = λ idx → 1
-- lookup ns₁ idx ≡ lookup (cast p₁ ns₂) (idx ↑ˡ n) -- by g₁[]≡g₂[]
-- lookup (cast p₁ ns₂) (idx ↑ˡ n) ≡ lookup ns₂ (Fin.cast (sym p₁) (idx ↑ˡ n)) -- by lookup-cast₁
-- -------- s₁ + n₁ → s₂
-- ---------- Fin (s₁ + n₁)
-- ----------------------------- Fin s₂
-- lookup ns₂ (Fin.cast (sym p₁) (idx ↑ˡ n)) ≡ lookup (cast p₂ ns₃) ((Fin.cast (sym p₁) (idx ↑ˡ n₁) ↑ˡ n₂)) -- by g₂[]≡g₃[]
-- lookup (cast p₂ ns₃) ((Fin.cast (sym p₁) (idx ↑ˡ n₁) ↑ˡ n₂)) ≡ lookup ns₃ (Fin.cast (sym p₂) ((Fin.cast (sym p₁) (idx ↑ˡ n₁) ↑ˡ n₂))) -- by lookup-cast₂
-- lookup ns₃ (Fin.cast (sym p₂) ((Fin.cast (sym p₁) (idx ↑ˡ n₁) ↑ˡ n₂))) ≡ lookup ns₃ (Fin.cast (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ + n₂))) -- by flatten-casts
--
-- lookup ns₃ (Fin.cast (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ + n₂))) ≡ lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ + n₂)) ∎
}
record Relaxable (T : Graph → Set) : Set where
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _) idx → idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ g₁⊆g₂ (idx₁ , idx₂) →
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
)
}
ProdRelaxable : ∀ {P : Graph → Set} {Q : Graph → Set} →
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
Relaxable (P ⊗ Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁⊆g₂ (p , q) →
( Relaxable.relax pr g₁⊆g₂ p
, Relaxable.relax qr g₁⊆g₂ q) }
)
}
MonotonicGraphFunction : (Graph → Set) → Set
MonotonicGraphFunction T = (g₁ : Graph) → Σ Graph (λ g₂ → T g₂ × g₁ ⊆ g₂)
infixr 2 _⟨⊗⟩_
_⟨⊗⟩_ : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }} →
MonotonicGraphFunction T₁ → MonotonicGraphFunction T₂ →
MonotonicGraphFunction (T₁ ⊗ T₂)
_⟨⊗⟩_ {{r}} f₁ f₂ g
with (g' , (t₁ , g⊆g')) ← f₁ g
with (g'' , (t₂ , g'⊆g'')) ← f₂ g' =
(g'' , ((Relaxable.relax r g'⊆g'' t₁ , t₂) , ⊆-trans g⊆g' g'⊆g''))
infixl 2 _update_
_update_ : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
MonotonicGraphFunction T → (∀ (g : Graph) → T g → Σ Graph (λ g' → g ⊆ g')) →
MonotonicGraphFunction T
_update_ {{r}} f mod g
with (g' , (t , g⊆g')) ← f g
with (g'' , g'⊆g'') ← mod g' t =
(g'' , ((Relaxable.relax r g'⊆g'' t , ⊆-trans g⊆g' g'⊆g'')))
infixl 2 _map_
_map_ : ∀ {T₁ T₂ : Graph → Set} →
MonotonicGraphFunction T₁ → (∀ (g : Graph) → T₁ g → T₂ g) →
MonotonicGraphFunction T₂
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
module Construction where
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g +ⁿ 1
; nodes = Graph.nodes g ++ (bss ∷ [])
; edges = mapˡ (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; g₁[]≡g₂[] = λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
; e∈g₁⇒e∈g₂ = λ e e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
}
)
)
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
addEdges g es =
( record
{ size = Graph.size g
; nodes = Graph.nodes g
; edges = es ++ˡ Graph.edges g
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 (Graph.size g)
; g₁[]≡g₂[] = {!!}
; e∈g₁⇒e∈g₂ = {!!}
}
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx') →
addEdges g ((idx , idx') ∷ (idx₂ , idx) ∷ []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
-- open Relaxable {{...}} public
open import Lattice.MapSet _≟ˢ_
renaming
( MapSet to StringSet
; insert to insertˢ
; to-List to to-Listˢ
; empty to emptyˢ
; singleton to singletonˢ
; _⊔_ to _⊔ˢ_
; `_ to `ˢ_
; _∈_ to _∈ˢ_
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
)
data _∈ᵉ_ : String → Expr → Set where
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
here : ∀ {k : String} → k ∈ᵉ (` k)
data _∈ᵇ_ : String → BasicStmt → Set where
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵇ (k ← e)
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵇ (k' ← e)
private
Expr-vars : Expr → StringSet
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars here = RelAny.here refl
BasicStmt-vars : BasicStmt → StringSet
BasicStmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
BasicStmt-vars noop = emptyˢ
Stmt-vars : Stmt → StringSet
Stmt-vars ⟨ bs ⟩ = BasicStmt-vars bs
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) (`ˢ (Expr-vars e))) k∈vs
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
-- {m₂ = Expr-vars e}
-- (RelAny.here refl)
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
-- {m₂ = Expr-vars e}
-- (∈⇒∈-Expr-vars k∈e)
Stmts-vars : ∀ {n : } → Vec Stmt n → StringSet
Stmts-vars = foldr (λ n → StringSet)
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
-- ∈-Stmts-vars⇒∈ : ∀ {n : } {k : String} (ss : Vec Stmt n) →
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) (`ˢ (Stmts-vars ss'))) k∈vss
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ... | in₂ _ (single k,tt∈vss') =
-- let
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
-- in
-- (suc f' , k∈s')
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ∈⇒∈-Stmts-vars : ∀ {n : } {k : String} {ss : Vec Stmt n} {f : Fin n} →
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmt-vars k∈s)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
-- Creating a new number from a natural number can never create one
-- equal to one you get from weakening the bounds on another number.
z≢sf : ∀ {n : } (f : Fin n) → ¬ (zero ≡ suc f)
z≢sf f ()
z≢mapsfs : ∀ {n : } (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
indices : ∀ (n : ) → Σ (List (Fin n)) Unique
indices 0 = ([] , empty)
indices (suc n') =
let
(inds' , unids') = indices n'
in
( zero ∷ mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
indices-complete : ∀ (n : ) (f : Fin n) → f ∈ˡ (proj₁ (indices n))
indices-complete (suc n') zero = RelAny.here refl
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
-- Sketch, 'build control flow graph'
-- -- Create new block, mark it as the current insertion point.
-- emptyBlock : m Id
-- currentBlock : m Id
-- -- Create a new block, and insert the statement into it. Shold restore insertion pont.
-- createBlock : Stmt → m (Id × Id)
-- -- Note that the given ID is a successor / predecessor of the given
-- -- insertion point.
-- noteSuccessor : Id → m ()
-- notePredecessor : Id → m ()
-- noteEdge : Id → Id → m ()
-- -- Insert the given statment into the current insertion point.
-- buildCfg : Stmt → m Cfg
-- buildCfg { bs₁ } = push bs₁
-- buildCfg (s₁ ; s₂ ) = buildCfg s₁ >> buildCfg s₂
-- buildCfg (if _ then s₁ else s₂) = do
-- (b₁ , b₁') ← createBlock s₁
-- noteSuccessor b₁
-- (b₂ , b₂') ← createBlock s₂
-- noteSuccessor b₂
-- b ← emptyBlock
-- notePredecessor b₁'
-- notePredecessor b₂'
-- buildCfg (while e repeat s) = do
-- (b₁, b₁') ← createBlock s
-- noteSuccessor b₁
-- noteEdge b₁' b₁
-- b ← emptyBlock
-- notePredecessor b₁'
-- For now, just represent the program and CFG as one type, without branching.
record Program : Set where
field
length :
stmts : Vec Stmt length
private
vars-Set : StringSet
vars-Set = Stmts-vars stmts
vars : List String
vars = to-Listˢ vars-Set
vars-Unique : Unique vars
vars-Unique = proj₂ vars-Set
State : Set
State = Fin length
states : List State
states = proj₁ (indices length)
states-complete : ∀ (s : State) → s ∈ˡ states
states-complete = indices-complete length
states-Unique : Unique states
states-Unique = proj₂ (indices length)
code : State → Stmt
code = lookup stmts
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ∈ˡ vars
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
_≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟ᶠ_
-- Computations for incoming and outgoing edges will have to change too
-- when we support branching etc.
incoming : State → List State
incoming
with length
... | 0 = (λ ())
... | suc n' = (λ
{ zero → []
; (suc f') → (inject₁ f') ∷ []
})