330 lines
18 KiB
Agda
330 lines
18 KiB
Agda
open import Language hiding (_[_])
|
||
open import Lattice
|
||
|
||
module Analysis.Forward
|
||
{L : Set} {h}
|
||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||
|
||
open import Data.Empty using (⊥-elim)
|
||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||
open import Data.Nat using (suc)
|
||
open import Data.Product using (_×_; proj₁; proj₂; _,_)
|
||
open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith)
|
||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||
open import Data.List.Relation.Unary.Any as Any using ()
|
||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||
open import Data.Unit using (⊤)
|
||
open import Function using (_∘_; flip)
|
||
|
||
open import Utils using (Pairwise; _⇒_)
|
||
import Lattice.FiniteValueMap
|
||
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||
using ()
|
||
renaming
|
||
( isLattice to isLatticeˡ
|
||
; fixedHeight to fixedHeightˡ
|
||
; _≼_ to _≼ˡ_
|
||
; ≈-sym to ≈ˡ-sym
|
||
)
|
||
|
||
module WithProg (prog : Program) where
|
||
open Program prog
|
||
|
||
-- The variable -> abstract value (e.g. sign) map is a finite value-map
|
||
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
|
||
open VariableValuesFiniteMap
|
||
using ()
|
||
renaming
|
||
( FiniteMap to VariableValues
|
||
; isLattice to isLatticeᵛ
|
||
; _≈_ to _≈ᵛ_
|
||
; _⊔_ to _⊔ᵛ_
|
||
; _≼_ to _≼ᵛ_
|
||
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
|
||
; _∈_ to _∈ᵛ_
|
||
; _∈k_ to _∈kᵛ_
|
||
; _updating_via_ to _updatingᵛ_via_
|
||
; locate to locateᵛ
|
||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||
; ∈k-dec to ∈k-decᵛ
|
||
; all-equal-keys to all-equal-keysᵛ
|
||
)
|
||
public
|
||
open IsLattice isLatticeᵛ
|
||
using ()
|
||
renaming
|
||
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
||
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
||
; ⊔-idemp to ⊔ᵛ-idemp
|
||
)
|
||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
|
||
using ()
|
||
renaming
|
||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||
)
|
||
|
||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
|
||
|
||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
|
||
open StateVariablesFiniteMap
|
||
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks])
|
||
renaming
|
||
( FiniteMap to StateVariables
|
||
; isLattice to isLatticeᵐ
|
||
; _≈_ to _≈ᵐ_
|
||
; _∈_ to _∈ᵐ_
|
||
; _∈k_ to _∈kᵐ_
|
||
; locate to locateᵐ
|
||
; _≼_ to _≼ᵐ_
|
||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||
)
|
||
public
|
||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||
using ()
|
||
renaming
|
||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||
)
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||
using ()
|
||
renaming
|
||
( ≈-sym to ≈ᵐ-sym
|
||
)
|
||
|
||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||
|
||
-- We now have our (state -> (variables -> value)) map.
|
||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||
-- since the State type is as specific as possible, it's always possible to
|
||
-- retrieve the variable values at each state.
|
||
|
||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||
|
||
variablesAt : State → StateVariables → VariableValues
|
||
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||
|
||
variablesAt-∈ : ∀ (s : State) (sv : StateVariables) → (s , variablesAt s sv) ∈ᵐ sv
|
||
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||
|
||
variablesAt-≈ : ∀ s sv₁ sv₂ → sv₁ ≈ᵐ sv₂ → variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
|
||
variablesAt-≈ = {!!}
|
||
|
||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||
--
|
||
-- L₁ → (A → L₂)
|
||
--
|
||
-- Construction, with L₁ = (A → L₂), and f = id
|
||
|
||
joinForKey : State → StateVariables → VariableValues
|
||
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||
|
||
-- The per-key join is made up of map key accesses (which are monotonic)
|
||
-- and folds using the join operation (also monotonic)
|
||
|
||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||
|
||
-- The name f' comes from the formulation of Exercise 4.26.
|
||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||
renaming
|
||
( f' to joinAll
|
||
; f'-Monotonic to joinAll-Mono
|
||
; f'-k∈ks-≡ to joinAll-k∈ks-≡
|
||
)
|
||
|
||
variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) →
|
||
variablesAt s (joinAll sv) ≡ joinForKey s sv
|
||
variablesAt-joinAll s sv
|
||
with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
|
||
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||
|
||
-- With 'join' in hand, we need to perform abstract evaluation.
|
||
module WithEvaluator (eval : Expr → VariableValues → L)
|
||
(eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where
|
||
|
||
-- For a particular evaluation function, we need to perform an evaluation
|
||
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
|
||
-- generalized update to set the single key's value.
|
||
|
||
private module _ (k : String) (e : Expr) where
|
||
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
|
||
renaming
|
||
( f' to updateVariablesFromExpression
|
||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
|
||
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
|
||
)
|
||
public
|
||
|
||
-- The per-state update function makes use of the single-key setter,
|
||
-- updateVariablesFromExpression, for the case where the statement
|
||
-- is an assignment.
|
||
--
|
||
-- This per-state function adjusts the variables in that state,
|
||
-- also monotonically; we derive the for-each-state update from
|
||
-- the Exercise 4.26 again.
|
||
|
||
updateVariablesFromStmt : BasicStmt → VariableValues → VariableValues
|
||
updateVariablesFromStmt (k ← e) vs = updateVariablesFromExpression k e vs
|
||
updateVariablesFromStmt noop vs = vs
|
||
|
||
updateVariablesFromStmt-Monoʳ : ∀ (bs : BasicStmt) → Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs)
|
||
updateVariablesFromStmt-Monoʳ (k ← e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
|
||
updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂
|
||
|
||
updateVariablesForState : State → StateVariables → VariableValues
|
||
updateVariablesForState s sv =
|
||
foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s)
|
||
|
||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
|
||
let
|
||
bss = code s
|
||
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
|
||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||
in
|
||
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
|
||
(flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ
|
||
vs₁≼vs₂
|
||
|
||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||
renaming
|
||
( f' to updateAll
|
||
; f'-Monotonic to updateAll-Mono
|
||
; f'-k∈ks-≡ to updateAll-k∈ks-≡
|
||
)
|
||
|
||
-- Finally, the whole analysis consists of getting the 'join'
|
||
-- of all incoming states, then applying the per-state evaluation
|
||
-- function. This is just a composition, and is trivially monotonic.
|
||
|
||
analyze : StateVariables → StateVariables
|
||
analyze = updateAll ∘ joinAll
|
||
|
||
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
|
||
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
|
||
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
|
||
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||
|
||
-- The fixed point of the 'analyze' function is our final goal.
|
||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||
using ()
|
||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||
public
|
||
|
||
variablesAt-updateAll : ∀ (s : State) (sv : StateVariables) →
|
||
variablesAt s (updateAll sv) ≡ updateVariablesForState s sv
|
||
variablesAt-updateAll s sv
|
||
with (vs , s,vs∈usv) ← locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
|
||
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||
|
||
module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where
|
||
open LatticeInterpretation latticeInterpretationˡ
|
||
using ()
|
||
renaming (⟦_⟧ to ⟦_⟧ˡ; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ)
|
||
|
||
⟦_⟧ᵛ : VariableValues → Env → Set
|
||
⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v
|
||
|
||
|
||
⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ
|
||
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
|
||
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
|
||
let
|
||
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
|
||
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
|
||
in
|
||
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
|
||
|
||
⟦⟧ᵛ-foldr : ∀ {vs : VariableValues} {vss : List VariableValues} {ρ : Env} →
|
||
⟦ vs ⟧ᵛ ρ → vs ∈ˡ vss → ⟦ foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
|
||
⟦⟧ᵛ-foldr = {!!}
|
||
|
||
InterpretationValid : Set
|
||
InterpretationValid = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v
|
||
|
||
module WithValidity (interpretationValidˡ : InterpretationValid) where
|
||
|
||
updateVariablesFromStmt-matches : ∀ {bs vs ρ₁ ρ₂} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
|
||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ₁ = ⟦vs⟧ρ₁
|
||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ₁ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
|
||
with k ≟ˢ k' | k',v'∈ρ₂
|
||
... | yes refl | here _ v _
|
||
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
|
||
interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ₁
|
||
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
|
||
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
|
||
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
|
||
let
|
||
k'∉[k] = (λ { (Any.here refl) → k≢k' refl })
|
||
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
|
||
in
|
||
⟦vs⟧ρ₁ k',l∈vs k',v'∈ρ₁
|
||
|
||
updateVariablesFromStmt-fold-matches : ∀ {bss vs ρ₁ ρ₂} → ρ₁ , bss ⇒ᵇˢ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂
|
||
updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ
|
||
updateVariablesFromStmt-fold-matches {bs ∷ bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ∷ ρ,bss'⇒ρ₂) ⟦vs⟧ρ₁ =
|
||
updateVariablesFromStmt-fold-matches
|
||
{bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂
|
||
(updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ₁)
|
||
|
||
updateVariablesForState-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ updateVariablesForState s sv ⟧ᵛ ρ₂
|
||
updateVariablesForState-matches =
|
||
updateVariablesFromStmt-fold-matches
|
||
|
||
updateAll-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
|
||
updateAll-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||
rewrite variablesAt-updateAll s sv =
|
||
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||
|
||
|
||
stepTrace : ∀ {s₁ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s₁ result ⟧ᵛ ρ₂
|
||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂ =
|
||
let
|
||
-- I'd use rewrite, but Agda gets a memory overflow (?!).
|
||
⟦joinAll-result⟧ρ₁ =
|
||
subst (λ vs → ⟦ vs ⟧ᵛ ρ₁)
|
||
(sym (variablesAt-joinAll s₁ result))
|
||
⟦joinForKey-s₁⟧ρ₁
|
||
⟦analyze-result⟧ρ₂ =
|
||
updateAll-matches {sv = joinAll result}
|
||
ρ₁,bss⇒ρ₂ ⟦joinAll-result⟧ρ₁
|
||
analyze-result≈result =
|
||
≈ᵐ-sym {result} {updateAll (joinAll result)}
|
||
result≈analyze-result
|
||
analyze-s₁≈s₁ =
|
||
variablesAt-≈ s₁ (updateAll (joinAll result))
|
||
result (analyze-result≈result)
|
||
in
|
||
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ₂
|
||
|
||
walkTrace : ∀ {s₁ s₂ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → Trace {graph} s₁ s₂ ρ₁ ρ₂ → ⟦ variablesAt s₂ result ⟧ᵛ ρ₂
|
||
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-single ρ₁,bss⇒ρ₂) =
|
||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂
|
||
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
|
||
let
|
||
⟦result-s₁⟧ρ =
|
||
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ
|
||
s₁∈incomingStates =
|
||
[]-∈ result (edge⇒incoming s₁→s₂)
|
||
(variablesAt-∈ s₁ result)
|
||
⟦joinForKey-s⟧ρ =
|
||
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
|
||
in
|
||
walkTrace ⟦joinForKey-s⟧ρ tr
|