agda-spa/Analysis/Forward/Adapters.agda
Danila Fedorin 4da9b6d3cd Fuse 'FiniteMap' and 'FiniteValueMap'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-12-31 19:21:23 -08:00

101 lines
4.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Language hiding (_[_])
open import Lattice
module Analysis.Forward.Adapters
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_)
(prog : Program) where
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Data.Empty using (⊥-elim)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_; flip)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; _≼_ to _≼ˡ_
)
open Program prog
-- Now, allow StmtEvaluators to be auto-constructed from ExprEvaluators.
module ExprToStmtAdapter {{ exprEvaluator : ExprEvaluator }} where
open ExprEvaluator exprEvaluator
using ()
renaming
( eval to evalᵉ
; eval-Monoʳ to evalᵉ-Monoʳ
)
-- For a particular evaluation function, we need to perform an evaluation
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
-- generalized update to set the single key's value.
private module _ (k : String) (e : Expr) where
open VariableValuesFiniteMap.GeneralizedUpdate isLatticeᵛ (λ x x) (λ a₁≼a₂ a₁≼a₂) (λ _ evalᵉ e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ evalᵉ-Monoʳ e {vs₁} {vs₂} vs₁≼vs₂) (k [])
using ()
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
)
public
-- The per-state update function makes use of the single-key setter,
-- updateVariablesFromExpression, for the case where the statement
-- is an assignment.
--
-- This per-state function adjusts the variables in that state,
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
evalᵇ : State BasicStmt VariableValues VariableValues
evalᵇ _ (k e) vs = updateVariablesFromExpression k e vs
evalᵇ _ noop vs = vs
evalᵇ-Monoʳ : (s : State) (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (evalᵇ s bs)
evalᵇ-Monoʳ _ (k e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
evalᵇ-Monoʳ _ noop vs₁≼vs₂ = vs₁≼vs₂
instance
stmtEvaluator : StmtEvaluator
stmtEvaluator = record { eval = evalᵇ ; eval-Monoʳ = evalᵇ-Monoʳ }
-- Moreover, correct StmtEvaluators can be constructed from correct
-- ExprEvaluators.
module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{isValid : ValidExprEvaluator exprEvaluator latticeInterpretationˡ}} where
open ValidExprEvaluator isValid using () renaming (valid to validᵉ)
evalᵇ-valid : {s vs ρ₁ ρ₂ bs} ρ₁ , bs ⇒ᵇ ρ₂ vs ⟧ᵛ ρ₁ evalᵇ s bs vs ⟧ᵛ ρ₂
evalᵇ-valid {_} {vs} {ρ₁} {ρ₁} {_} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ = ⟦vs⟧ρ
evalᵇ-valid {_} {vs} {ρ₁} {_} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
with k ≟ˢ k' | k',v'∈ρ₂
... | yes refl | here _ v _
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
validᵉ ρ,e⇒v ⟦vs⟧ρ
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
let
k'∉[k] = (λ { (Any.here refl) k≢k' refl })
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
in
⟦vs⟧ρ k',l∈vs k',v'∈ρ₁
instance
validStmtEvaluator : ValidStmtEvaluator stmtEvaluator latticeInterpretationˡ
validStmtEvaluator = record
{ valid = λ {a} {b} {c} {d} evalᵇ-valid {a} {b} {c} {d}
}