agda-spa/Lattice/Unit.agda
Danila Fedorin 8abf6f8670 Make 'isLattice' for simple types be an instance
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-01-04 17:27:38 -08:00

130 lines
3.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Lattice.Unit where
open import Data.Empty using (⊥-elim)
open import Data.Product using (_,_)
open import Data.Nat using (; _≤_; z≤n)
open import Data.Unit using (; tt) public
open import Data.Unit.Properties using (_≟_; ≡-setoid)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
open import Relation.Nullary using (Dec; ¬_; yes; no)
open import Equivalence
open import Lattice
import Chain
open Setoid ≡-setoid using (refl; sym; trans)
_≈_ : Set
_≈_ = _≡_
≈-equiv : IsEquivalence _≈_
≈-equiv = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}
≈-dec : IsDecidable _≈_
≈-dec = _≟_
_⊔_ :
tt tt = tt
_⊓_ :
tt tt = tt
≈-⊔-cong : {ab₁ ab₂ ab₃ ab₄} ab₁ ab₂ ab₃ ab₄ (ab₁ ab₃) (ab₂ ab₄)
≈-⊔-cong {tt} {tt} {tt} {tt} _ _ = Eq.refl
⊔-assoc : (x y z : ) ((x y) z) (x (y z))
⊔-assoc tt tt tt = Eq.refl
⊔-comm : (x y : ) (x y) (y x)
⊔-comm tt tt = Eq.refl
⊔-idemp : (x : ) (x x) x
⊔-idemp tt = Eq.refl
instance
isJoinSemilattice : IsSemilattice _≈_ _⊔_
isJoinSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong = ≈-⊔-cong
; ⊔-assoc = ⊔-assoc
; ⊔-comm = ⊔-comm
; ⊔-idemp = ⊔-idemp
}
≈-⊓-cong : {ab₁ ab₂ ab₃ ab₄} ab₁ ab₂ ab₃ ab₄ (ab₁ ab₃) (ab₂ ab₄)
≈-⊓-cong {tt} {tt} {tt} {tt} _ _ = Eq.refl
⊓-assoc : (x y z : ) ((x y) z) (x (y z))
⊓-assoc tt tt tt = Eq.refl
⊓-comm : (x y : ) (x y) (y x)
⊓-comm tt tt = Eq.refl
⊓-idemp : (x : ) (x x) x
⊓-idemp tt = Eq.refl
instance
isMeetSemilattice : IsSemilattice _≈_ _⊓_
isMeetSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong = ≈-⊓-cong
; ⊔-assoc = ⊓-assoc
; ⊔-comm = ⊓-comm
; ⊔-idemp = ⊓-idemp
}
instance
isLattice : IsLattice _≈_ _⊔_ _⊓_
isLattice = record
{ joinSemilattice = isJoinSemilattice
; meetSemilattice = isMeetSemilattice
; absorb-⊔-⊓ = λ { tt tt Eq.refl }
; absorb-⊓-⊔ = λ { tt tt Eq.refl }
}
lattice : Lattice
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
private
longestChain : Chain tt tt 0
longestChain = done refl
isLongest : {t₁ t₂ : } {n : } Chain t₁ t₂ n n 0
isLongest {tt} {tt} (step (tt⊔tt≈tt , tt̷≈tt) _ _) = ⊥-elim (tt̷≈tt refl)
isLongest (done _) = z≤n
instance
fixedHeight : IsLattice.FixedHeight isLattice 0
fixedHeight = record
{ = tt
; = tt
; longestChain = longestChain
; bounded = isLongest
}
isFiniteHeightLattice : IsFiniteHeightLattice 0 _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice
finiteHeightLattice = record
{ height = 0
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}