574 lines
27 KiB
Agda
574 lines
27 KiB
Agda
module Language where
|
||
|
||
open import Data.Nat using (ℕ; suc; pred; _≤_) renaming (_+_ to _+ⁿ_)
|
||
open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive; +-assoc; +-comm)
|
||
open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
|
||
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁; cast-sym)
|
||
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
|
||
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
|
||
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
|
||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ)
|
||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||
open import Data.List.Relation.Unary.Any.Properties using (++⁺ʳ)
|
||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁; inject≤; _↑ʳ_; _↑ˡ_) renaming (_≟_ to _≟ᶠ_; cast to castᶠ)
|
||
open import Data.Fin.Properties using (suc-injective) renaming (cast-is-id to castᶠ-is-id)
|
||
open import Relation.Binary.PropositionalEquality as Eq using (subst; cong; _≡_; sym; trans; refl)
|
||
open import Relation.Nullary using (¬_)
|
||
open import Function using (_∘_)
|
||
open Eq.≡-Reasoning
|
||
|
||
open import Lattice
|
||
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
|
||
|
||
data Expr : Set where
|
||
_+_ : Expr → Expr → Expr
|
||
_-_ : Expr → Expr → Expr
|
||
`_ : String → Expr
|
||
#_ : ℕ → Expr
|
||
|
||
data BasicStmt : Set where
|
||
_←_ : String → Expr → BasicStmt
|
||
noop : BasicStmt
|
||
|
||
data Stmt : Set where
|
||
⟨_⟩ : BasicStmt → Stmt
|
||
_then_ : Stmt → Stmt → Stmt
|
||
if_then_else_ : Expr → Stmt → Stmt → Stmt
|
||
while_repeat_ : Expr → Stmt → Stmt
|
||
|
||
module Semantics where
|
||
data Value : Set where
|
||
↑ᶻ : ℤ → Value
|
||
|
||
Env : Set
|
||
Env = List (String × Value)
|
||
|
||
data _∈_ : (String × Value) → Env → Set where
|
||
here : ∀ (s : String) (v : Value) (ρ : Env) → (s , v) ∈ ((s , v) ∷ ρ)
|
||
there : ∀ (s s' : String) (v v' : Value) (ρ : Env) → ¬ (s ≡ s') → (s , v) ∈ ρ → (s , v) ∈ ((s' , v') ∷ ρ)
|
||
|
||
data _,_⇒ᵉ_ : Env → Expr → Value → Set where
|
||
⇒ᵉ-ℕ : ∀ (ρ : Env) (n : ℕ) → ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
|
||
⇒ᵉ-Var : ∀ (ρ : Env) (x : String) (v : Value) → (x , v) ∈ ρ → ρ , (` x) ⇒ᵉ v
|
||
⇒ᵉ-+ : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ℤ) →
|
||
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
|
||
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
|
||
⇒ᵉ-- : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ℤ) →
|
||
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
|
||
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
|
||
|
||
data _,_⇒ᵇ_ : Env → BasicStmt → Env → Set where
|
||
⇒ᵇ-noop : ∀ (ρ : Env) → ρ , noop ⇒ᵇ ρ
|
||
⇒ᵇ-← : ∀ (ρ : Env) (x : String) (e : Expr) (v : Value) →
|
||
ρ , e ⇒ᵉ v → ρ , (x ← e) ⇒ᵇ ((x , v) ∷ ρ)
|
||
|
||
data _,_⇒ˢ_ : Env → Stmt → Env → Set where
|
||
⇒ˢ-⟨⟩ : ∀ (ρ₁ ρ₂ : Env) (bs : BasicStmt) →
|
||
ρ₁ , bs ⇒ᵇ ρ₂ → ρ₁ , ⟨ bs ⟩ ⇒ˢ ρ₂
|
||
⇒ˢ-then : ∀ (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt) →
|
||
ρ₁ , s₁ ⇒ˢ ρ₂ → ρ₂ , s₂ ⇒ˢ ρ₃ →
|
||
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
|
||
⇒ˢ-if-true : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (z : ℤ) (s₁ s₂ : Stmt) →
|
||
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s₁ ⇒ˢ ρ₂ →
|
||
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
|
||
⇒ˢ-if-false : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt) →
|
||
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) → ρ₁ , s₂ ⇒ˢ ρ₂ →
|
||
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
|
||
⇒ˢ-while-true : ∀ (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ℤ) (s : Stmt) →
|
||
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s ⇒ˢ ρ₂ → ρ₂ , (while e repeat s) ⇒ˢ ρ₃ →
|
||
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
|
||
⇒ˢ-while-false : ∀ (ρ : Env) (e : Expr) (s : Stmt) →
|
||
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
|
||
ρ , (while e repeat s) ⇒ˢ ρ
|
||
|
||
module Graphs where
|
||
open Semantics
|
||
|
||
record Graph : Set where
|
||
constructor MkGraph
|
||
field
|
||
size : ℕ
|
||
|
||
Index : Set
|
||
Index = Fin size
|
||
|
||
Edge : Set
|
||
Edge = Index × Index
|
||
|
||
field
|
||
nodes : Vec (List BasicStmt) size
|
||
edges : List Edge
|
||
|
||
↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
|
||
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
|
||
|
||
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
||
_[_] g idx = lookup (Graph.nodes g) idx
|
||
|
||
record _⊆_ (g₁ g₂ : Graph) : Set where
|
||
constructor Mk-⊆
|
||
field
|
||
n : ℕ
|
||
sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
|
||
newNodes : Vec (List BasicStmt) n
|
||
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
|
||
e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
||
e ∈ˡ (Graph.edges g₁) →
|
||
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
||
|
||
castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
|
||
castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
|
||
|
||
↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) ≡ s +ⁿ n₁ +ⁿ n₂) →
|
||
f ↑ˡ n₁ ↑ˡ n₂ ≡ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
|
||
↑ˡ-assoc zero p = refl
|
||
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
|
||
|
||
↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) ≡ s +ⁿ n₁ +ⁿ n₂) →
|
||
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ +ⁿ n₂))
|
||
↑ˡ-Edge-assoc (idx₁ , idx₂) p
|
||
rewrite ↑ˡ-assoc idx₁ p
|
||
rewrite ↑ˡ-assoc idx₂ p = refl
|
||
|
||
↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s +ⁿ 0 ≡ s) →
|
||
f ≡ castᶠ p (f ↑ˡ 0)
|
||
↑ˡ-identityʳ zero p = refl
|
||
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
|
||
|
||
↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s +ⁿ 0 ≡ s) →
|
||
e ≡ castᵉ p (↑ˡ-Edge e 0)
|
||
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
|
||
rewrite sym (↑ˡ-identityʳ idx₁ p)
|
||
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
|
||
|
||
cast∈⇒∈subst : ∀ {n m : ℕ} (p : n ≡ m) (q : m ≡ n)
|
||
(e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
|
||
castᵉ p e ∈ˡ es →
|
||
e ∈ˡ subst (λ m → List (Fin m × Fin m)) q es
|
||
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
|
||
rewrite castᶠ-is-id refl idx₁
|
||
rewrite castᶠ-is-id refl idx₂ = e∈es
|
||
|
||
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
||
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
|
||
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
|
||
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
|
||
rewrite cast-is-id refl ns₂
|
||
rewrite cast-is-id refl ns₃
|
||
with refl ← nsg₂≡nsg₁++newNodes₁
|
||
with refl ← nsg₃≡nsg₂++newNodes₂ =
|
||
record
|
||
{ n = n₁ +ⁿ n₂
|
||
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
|
||
; newNodes = newNodes₁ ++ newNodes₂
|
||
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
|
||
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
|
||
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
|
||
(subst (λ e' → e' ∈ˡ es₃)
|
||
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
|
||
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
|
||
}
|
||
|
||
record Relaxable (T : Graph → Set) : Set where
|
||
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
||
|
||
instance
|
||
IndexRelaxable : Relaxable Graph.Index
|
||
IndexRelaxable = record
|
||
{ relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
|
||
}
|
||
|
||
EdgeRelaxable : Relaxable Graph.Edge
|
||
EdgeRelaxable = record
|
||
{ relax = λ g₁⊆g₂ (idx₁ , idx₂) →
|
||
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
|
||
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
|
||
)
|
||
}
|
||
|
||
ProdRelaxable : ∀ {P : Graph → Set} {Q : Graph → Set} →
|
||
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
|
||
Relaxable (P ⊗ Q)
|
||
ProdRelaxable {{pr}} {{qr}} = record
|
||
{ relax = (λ { g₁⊆g₂ (p , q) →
|
||
( Relaxable.relax pr g₁⊆g₂ p
|
||
, Relaxable.relax qr g₁⊆g₂ q) }
|
||
)
|
||
}
|
||
|
||
open Relaxable {{...}} public
|
||
|
||
relax-preserves-[]≡ : ∀ (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ ⊆ g₂) (idx : Graph.Index g₁) →
|
||
g₁ [ idx ] ≡ g₂ [ relax g₁⊆g₂ idx ]
|
||
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
|
||
rewrite cast-is-id refl (Graph.nodes g₂)
|
||
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
|
||
|
||
-- Tools for graph construction. The most important is a 'monotonic function':
|
||
-- one that takes a graph, and produces another graph, such that the
|
||
-- new graph includes all the information from the old one.
|
||
|
||
MonotonicGraphFunction : (Graph → Set) → Set
|
||
MonotonicGraphFunction T = (g₁ : Graph) → Σ Graph (λ g₂ → T g₂ × g₁ ⊆ g₂)
|
||
|
||
-- Now, define some operations on monotonic functions; these are useful
|
||
-- to save the work of threading intermediate graphs in and out of operations.
|
||
|
||
infixr 2 _⟨⊗⟩_
|
||
_⟨⊗⟩_ : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }} →
|
||
MonotonicGraphFunction T₁ → MonotonicGraphFunction T₂ →
|
||
MonotonicGraphFunction (T₁ ⊗ T₂)
|
||
_⟨⊗⟩_ {{r}} f₁ f₂ g
|
||
with (g' , (t₁ , g⊆g')) ← f₁ g
|
||
with (g'' , (t₂ , g'⊆g'')) ← f₂ g' =
|
||
(g'' , ((Relaxable.relax r g'⊆g'' t₁ , t₂) , ⊆-trans g⊆g' g'⊆g''))
|
||
|
||
infixl 2 _update_
|
||
_update_ : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
|
||
MonotonicGraphFunction T → (∀ (g : Graph) → T g → Σ Graph (λ g' → g ⊆ g')) →
|
||
MonotonicGraphFunction T
|
||
_update_ {{r}} f mod g
|
||
with (g' , (t , g⊆g')) ← f g
|
||
with (g'' , g'⊆g'') ← mod g' t =
|
||
(g'' , ((Relaxable.relax r g'⊆g'' t , ⊆-trans g⊆g' g'⊆g'')))
|
||
|
||
infixl 2 _map_
|
||
_map_ : ∀ {T₁ T₂ : Graph → Set} →
|
||
MonotonicGraphFunction T₁ → (∀ (g : Graph) → T₁ g → T₂ g) →
|
||
MonotonicGraphFunction T₂
|
||
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
|
||
|
||
|
||
-- To reason about monotonic functions and what we do, we need a way
|
||
-- to describe values they produce. A 'graph-value predicate' is
|
||
-- just a predicate for some (dependent) value.
|
||
|
||
GraphValuePredicate : (Graph → Set) → Set₁
|
||
GraphValuePredicate T = ∀ (g : Graph) → T g → Set
|
||
|
||
Both : {T₁ T₂ : Graph → Set} → GraphValuePredicate T₁ → GraphValuePredicate T₂ →
|
||
GraphValuePredicate (T₁ ⊗ T₂)
|
||
Both P Q = (λ { g (t₁ , t₂) → (P g t₁ × Q g t₂) })
|
||
|
||
-- Since monotnic functions keep adding on to a function, proofs of
|
||
-- graph-value predicates go stale fast (they describe old values of
|
||
-- the graph). To keep propagating them through, we need them to still
|
||
-- on 'bigger graphs'. We call such predicates monotonic as well, since
|
||
-- they respect the ordering of graphs.
|
||
|
||
MonotonicPredicate : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
|
||
GraphValuePredicate T → Set
|
||
MonotonicPredicate {T} P = ∀ (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ ⊆ g₂) →
|
||
P g₁ t₁ → P g₂ (relax g₁⊆g₂ t₁)
|
||
|
||
|
||
-- A 'map' has a certain property if its ouputs satisfy that property
|
||
-- for all inputs.
|
||
|
||
always : ∀ {T : Graph → Set} → GraphValuePredicate T → MonotonicGraphFunction T → Set
|
||
always P m = ∀ g₁ → let (g₂ , t , _) = m g₁ in P g₂ t
|
||
|
||
⟨⊗⟩-reason : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }}
|
||
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
|
||
{P-Mono : MonotonicPredicate P}
|
||
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂} →
|
||
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ g
|
||
with p ← aP g
|
||
with (g' , (t₁ , g⊆g')) ← m₁ g
|
||
with q ← aQ g'
|
||
with (g'' , (t₂ , g'⊆g'')) ← m₂ g' = (P-Mono _ _ _ g'⊆g'' p , q)
|
||
|
||
module Construction where
|
||
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||
pushBasicBlock bss g =
|
||
( record
|
||
{ size = Graph.size g +ⁿ 1
|
||
; nodes = Graph.nodes g ++ (bss ∷ [])
|
||
; edges = mapˡ (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
||
}
|
||
, ( Graph.size g ↑ʳ zero
|
||
, record
|
||
{ n = 1
|
||
; sg₂≡sg₁+n = refl
|
||
; newNodes = (bss ∷ [])
|
||
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
|
||
; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
|
||
}
|
||
)
|
||
)
|
||
|
||
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||
addEdges (MkGraph s ns es) es' =
|
||
( record
|
||
{ size = s
|
||
; nodes = ns
|
||
; edges = es' ++ˡ es
|
||
}
|
||
, record
|
||
{ n = 0
|
||
; sg₂≡sg₁+n = +-comm 0 s
|
||
; newNodes = []
|
||
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
|
||
; e∈g₁⇒e∈g₂ = λ {e} e∈es →
|
||
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
|
||
(subst (λ e' → e' ∈ˡ _)
|
||
(↑ˡ-Edge-identityʳ e (+-comm s 0))
|
||
(∈ˡ-++⁺ʳ es' e∈es))
|
||
}
|
||
)
|
||
|
||
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||
pushEmptyBlock = pushBasicBlock []
|
||
|
||
buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
|
||
buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
|
||
buildCfg (s₁ then s₂) =
|
||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
|
||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
|
||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
|
||
buildCfg (if _ then s₁ else s₂) =
|
||
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
|
||
addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
|
||
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
|
||
buildCfg (while _ repeat s) =
|
||
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||
update (λ { g ((idx₁ , idx₂) , idx , idx') →
|
||
addEdges g ((idx , idx') ∷ (idx₂ , idx) ∷ []) })
|
||
map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
|
||
|
||
open import Lattice.MapSet _≟ˢ_
|
||
renaming
|
||
( MapSet to StringSet
|
||
; insert to insertˢ
|
||
; to-List to to-Listˢ
|
||
; empty to emptyˢ
|
||
; singleton to singletonˢ
|
||
; _⊔_ to _⊔ˢ_
|
||
; `_ to `ˢ_
|
||
; _∈_ to _∈ˢ_
|
||
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
|
||
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
|
||
)
|
||
|
||
data _∈ᵉ_ : String → Expr → Set where
|
||
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
|
||
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
|
||
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
|
||
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
|
||
here : ∀ {k : String} → k ∈ᵉ (` k)
|
||
|
||
data _∈ᵇ_ : String → BasicStmt → Set where
|
||
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵇ (k ← e)
|
||
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵇ (k' ← e)
|
||
|
||
private
|
||
Expr-vars : Expr → StringSet
|
||
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
|
||
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
|
||
Expr-vars (` s) = singletonˢ s
|
||
Expr-vars (# _) = emptyˢ
|
||
|
||
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
|
||
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
|
||
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
|
||
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
|
||
|
||
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
|
||
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
|
||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||
-- {m₂ = Expr-vars e₂}
|
||
-- (∈⇒∈-Expr-vars k∈e₁)
|
||
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
|
||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||
-- {m₂ = Expr-vars e₂}
|
||
-- (∈⇒∈-Expr-vars k∈e₂)
|
||
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
|
||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||
-- {m₂ = Expr-vars e₂}
|
||
-- (∈⇒∈-Expr-vars k∈e₁)
|
||
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
|
||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||
-- {m₂ = Expr-vars e₂}
|
||
-- (∈⇒∈-Expr-vars k∈e₂)
|
||
-- ∈⇒∈-Expr-vars here = RelAny.here refl
|
||
|
||
BasicStmt-vars : BasicStmt → StringSet
|
||
BasicStmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
|
||
BasicStmt-vars noop = emptyˢ
|
||
|
||
Stmt-vars : Stmt → StringSet
|
||
Stmt-vars ⟨ bs ⟩ = BasicStmt-vars bs
|
||
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
|
||
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
|
||
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
|
||
|
||
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
|
||
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
|
||
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) ∪ (`ˢ (Expr-vars e))) k∈vs
|
||
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
|
||
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
|
||
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
|
||
|
||
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
|
||
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
|
||
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
|
||
-- {m₂ = Expr-vars e}
|
||
-- (RelAny.here refl)
|
||
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
|
||
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
|
||
-- {m₂ = Expr-vars e}
|
||
-- (∈⇒∈-Expr-vars k∈e)
|
||
|
||
Stmts-vars : ∀ {n : ℕ} → Vec Stmt n → StringSet
|
||
Stmts-vars = foldr (λ n → StringSet)
|
||
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
|
||
|
||
-- ∈-Stmts-vars⇒∈ : ∀ {n : ℕ} {k : String} (ss : Vec Stmt n) →
|
||
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
|
||
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
|
||
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) ∪ (`ˢ (Stmts-vars ss'))) k∈vss
|
||
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||
-- ... | in₂ _ (single k,tt∈vss') =
|
||
-- let
|
||
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
|
||
-- in
|
||
-- (suc f' , k∈s')
|
||
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||
|
||
-- ∈⇒∈-Stmts-vars : ∀ {n : ℕ} {k : String} {ss : Vec Stmt n} {f : Fin n} →
|
||
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
|
||
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
|
||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
|
||
-- {m₂ = Stmts-vars ss'}
|
||
-- (∈⇒∈-Stmt-vars k∈s)
|
||
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
|
||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
|
||
-- {m₂ = Stmts-vars ss'}
|
||
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
|
||
|
||
-- Creating a new number from a natural number can never create one
|
||
-- equal to one you get from weakening the bounds on another number.
|
||
z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (zero ≡ suc f)
|
||
z≢sf f ()
|
||
|
||
z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (mapˡ suc fs)
|
||
z≢mapsfs [] = []
|
||
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
|
||
|
||
indices : ∀ (n : ℕ) → Σ (List (Fin n)) Unique
|
||
indices 0 = ([] , empty)
|
||
indices (suc n') =
|
||
let
|
||
(inds' , unids') = indices n'
|
||
in
|
||
( zero ∷ mapˡ suc inds'
|
||
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
|
||
)
|
||
|
||
indices-complete : ∀ (n : ℕ) (f : Fin n) → f ∈ˡ (proj₁ (indices n))
|
||
indices-complete (suc n') zero = RelAny.here refl
|
||
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
|
||
|
||
-- Sketch, 'build control flow graph'
|
||
|
||
-- -- Create new block, mark it as the current insertion point.
|
||
-- emptyBlock : m Id
|
||
|
||
-- currentBlock : m Id
|
||
|
||
-- -- Create a new block, and insert the statement into it. Shold restore insertion pont.
|
||
-- createBlock : Stmt → m (Id × Id)
|
||
|
||
-- -- Note that the given ID is a successor / predecessor of the given
|
||
-- -- insertion point.
|
||
-- noteSuccessor : Id → m ()
|
||
-- notePredecessor : Id → m ()
|
||
-- noteEdge : Id → Id → m ()
|
||
|
||
-- -- Insert the given statment into the current insertion point.
|
||
-- buildCfg : Stmt → m Cfg
|
||
-- buildCfg { bs₁ } = push bs₁
|
||
-- buildCfg (s₁ ; s₂ ) = buildCfg s₁ >> buildCfg s₂
|
||
-- buildCfg (if _ then s₁ else s₂) = do
|
||
-- (b₁ , b₁') ← createBlock s₁
|
||
-- noteSuccessor b₁
|
||
|
||
-- (b₂ , b₂') ← createBlock s₂
|
||
-- noteSuccessor b₂
|
||
|
||
-- b ← emptyBlock
|
||
-- notePredecessor b₁'
|
||
-- notePredecessor b₂'
|
||
-- buildCfg (while e repeat s) = do
|
||
-- (b₁, b₁') ← createBlock s
|
||
-- noteSuccessor b₁
|
||
-- noteEdge b₁' b₁
|
||
|
||
-- b ← emptyBlock
|
||
-- notePredecessor b₁'
|
||
|
||
|
||
-- For now, just represent the program and CFG as one type, without branching.
|
||
record Program : Set where
|
||
field
|
||
length : ℕ
|
||
stmts : Vec Stmt length
|
||
|
||
private
|
||
vars-Set : StringSet
|
||
vars-Set = Stmts-vars stmts
|
||
|
||
vars : List String
|
||
vars = to-Listˢ vars-Set
|
||
|
||
vars-Unique : Unique vars
|
||
vars-Unique = proj₂ vars-Set
|
||
|
||
State : Set
|
||
State = Fin length
|
||
|
||
states : List State
|
||
states = proj₁ (indices length)
|
||
|
||
states-complete : ∀ (s : State) → s ∈ˡ states
|
||
states-complete = indices-complete length
|
||
|
||
states-Unique : Unique states
|
||
states-Unique = proj₂ (indices length)
|
||
|
||
code : State → Stmt
|
||
code = lookup stmts
|
||
|
||
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ∈ˡ vars
|
||
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
|
||
|
||
_≟_ : IsDecidable (_≡_ {_} {State})
|
||
_≟_ = _≟ᶠ_
|
||
|
||
-- Computations for incoming and outgoing edges will have to change too
|
||
-- when we support branching etc.
|
||
|
||
incoming : State → List State
|
||
incoming
|
||
with length
|
||
... | 0 = (λ ())
|
||
... | suc n' = (λ
|
||
{ zero → []
|
||
; (suc f') → (inject₁ f') ∷ []
|
||
})
|