agda-spa/Utils.agda
Danila Fedorin d96eb97b69 Switch maps (and consequently most of the code) to using instances
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-01-04 21:16:22 -08:00

109 lines
5.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Nat using (; suc)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Unary using (Decidable)
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
Unique-append : {c} {C : Set c} {x : C} {xs : List C}
¬ x xs Unique xs Unique (xs ++ (x []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' xs'} x∉xs (push x'≢ uxs') =
push (help x'≢) (Unique-append (λ x∈xs' x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} All (λ x'' ¬ x' x'') l All (λ x'' ¬ x' x'') (l ++ (x []))
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
All-≢-map : {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
All (λ x' ¬ x x') xs All (λ y' ¬ (f x) y') (mapˡ f xs)
All-≢-map x f f-Injecitve [] = []
All-≢-map x {x' xs'} f f-Injecitve (x≢x' x≢xs') = (λ fx≡fx' x≢x' (f-Injecitve fx≡fx')) All-≢-map x f f-Injecitve x≢xs'
Unique-map : {c d} {C : Set c} {D : Set d} {l : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
Unique l Unique (mapˡ f l)
Unique-map {l = []} _ _ _ = empty
Unique-map {l = x xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
All-single : {p c} {C : Set c} {P : C Set p} {c : C} {l : List C} All P l c l P c
All-single {c = c} {l = x xs} (p ps) (here refl) = p
All-single {c = c} {l = x xs} (p ps) (there c∈xs) = All-single ps c∈xs
All-x∈xs : {a} {A : Set a} (xs : List A) All (λ x x xs) xs
All-x∈xs [] = []
All-x∈xs (x xs') = here refl map there (All-x∈xs xs')
x∈xs⇒fx∈fxs : {a b} {A : Set a} {B : Set b} (f : A B) {x : A} {xs : List A}
x xs (f x) mapˡ f xs
x∈xs⇒fx∈fxs f (here refl) = here refl
x∈xs⇒fx∈fxs f (there x∈xs') = there (x∈xs⇒fx∈fxs f x∈xs')
iterate : {a} {A : Set a} (n : ) (f : A A) A A
iterate 0 _ a = a
iterate (suc n) f a = f (iterate n f a)
data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A B Set c) : List A List B Set (a ⊔ℓ b ⊔ℓ c) where
[] : Pairwise P [] []
_∷_ : {x : A} {y : B} {xs : List A} {ys : List B}
P x y Pairwise P xs ys
Pairwise P (x xs) (y ys)
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)
concat-∈ : {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)}
x l l ls x foldr _++_ [] ls
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
concat-∈ {ls = l' ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
filter-++ : {a p} {A : Set a} (l₁ l₂ : List A) {P : A Set p} (P? : Decidable P)
filter P? (l₁ ++ l₂) filter P? l₁ ++ filter P? l₂
filter-++ [] l₂ P? = refl
filter-++ (x xs) l₂ P?
with P? x
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
... | no _ = (filter-++ xs l₂ P?)
_⇒_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
_⇒_ P Q = a P a Q a
__ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
__ P Q a = P a Q a
_∧_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
_∧_ P Q a = P a × Q a
it : {a} {A : Set a} {{_ : A}} A
it {{x}} = x