Danila Fedorin
c2c04e3ecd
To keep old (expression-based) analyses working, switch to using instance search and provide "adapters" that auto-construct statement analyzers from expression analyzers. Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
67 lines
2.8 KiB
Agda
67 lines
2.8 KiB
Agda
open import Language hiding (_[_])
|
||
open import Lattice
|
||
|
||
module Analysis.Forward.Evaluation
|
||
{L : Set} {h}
|
||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||
(prog : Program) where
|
||
|
||
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||
open import Data.Product using (_,_)
|
||
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||
using ()
|
||
renaming
|
||
( isLattice to isLatticeˡ
|
||
; _≼_ to _≼ˡ_
|
||
)
|
||
open Program prog
|
||
|
||
-- The "full" version of the analysis ought to define a function
|
||
-- that analyzes each basic statement. For some analyses, the state ID
|
||
-- is used as part of the lattice, so include it here.
|
||
record StmtEvaluator : Set where
|
||
field
|
||
eval : State → BasicStmt → VariableValues → VariableValues
|
||
eval-Monoʳ : ∀ (s : State) (bs : BasicStmt) → Monotonic _≼ᵛ_ _≼ᵛ_ (eval s bs)
|
||
|
||
-- For some "simpler" analyes, all we need to do is analyze the expressions.
|
||
-- For that purpose, provide a simpler evaluator type.
|
||
record ExprEvaluator : Set where
|
||
field
|
||
eval : Expr → VariableValues → L
|
||
eval-Monoʳ : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)
|
||
|
||
-- Evaluators have a notion of being "valid", in which the (symbolic)
|
||
-- manipulations on lattice elements they perform match up with
|
||
-- the semantics. Define what it means to be valid for statement and
|
||
-- expression-based evaluators. Define "IsValidExprEvaluator"
|
||
-- and "IsValidStmtEvaluator" standalone so that users can use them
|
||
-- in their type expressions.
|
||
|
||
module _ {{evaluator : ExprEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where
|
||
open ExprEvaluator evaluator
|
||
open LatticeInterpretation interpretation
|
||
|
||
IsValidExprEvaluator : Set
|
||
IsValidExprEvaluator = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v
|
||
|
||
record ValidExprEvaluator (evaluator : ExprEvaluator)
|
||
(interpretation : LatticeInterpretation isLatticeˡ) : Set₁ where
|
||
field
|
||
valid : IsValidExprEvaluator {{evaluator}} {{interpretation}}
|
||
|
||
module _ {{evaluator : StmtEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where
|
||
open StmtEvaluator evaluator
|
||
open LatticeInterpretation interpretation
|
||
|
||
IsValidStmtEvaluator : Set
|
||
IsValidStmtEvaluator = ∀ {s vs ρ₁ ρ₂ bs} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ eval s bs vs ⟧ᵛ ρ₂
|
||
|
||
record ValidStmtEvaluator (evaluator : StmtEvaluator)
|
||
(interpretation : LatticeInterpretation isLatticeˡ) : Set₁ where
|
||
field
|
||
valid : IsValidStmtEvaluator {{evaluator}} {{interpretation}}
|