agda-spa/Lattice/IterProd.agda
Danila Fedorin d96eb97b69 Switch maps (and consequently most of the code) to using instances
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-01-04 21:16:22 -08:00

175 lines
6.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Lattice
open import Data.Unit using ()
-- Due to universe levels, it becomes relatively annoying to handle the case
-- where the levels of A and B are not the same. For the time being, constrain
-- them to be the same.
module Lattice.IterProd {a} (A B : Set a)
{_≈₁_ : A A Set a} {_≈₂_ : B B Set a}
{_⊔₁_ : A A A} {_⊔₂_ : B B B}
{_⊓₁_ : A A A} {_⊓₂_ : B B B}
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} (dummy : ) where
open import Agda.Primitive using (lsuc)
open import Data.Nat using (; zero; suc; _+_)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong)
open import Utils using (iterate)
open import Chain using (Height)
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
IterProd : Set a
IterProd k = iterate k (λ t A × t) B
-- To make iteration more convenient, package the definitions in Lattice
-- records, perform the recursion, and unpackage.
--
-- If we prove isLattice and isFiniteHeightLattice by induction separately,
-- we lose the connection between the operations (which should be the same)
-- that are built up by the two iterations. So, do everything in one iteration.
-- This requires some odd code.
build : A B (k : ) IterProd k
build _ b zero = b
build a b (suc s) = (a , build a b s)
private
record RequiredForFixedHeight : Set (lsuc a) where
field
≈₁-Decidable : IsDecidable _≈₁_
≈₂-Decidable : IsDecidable _≈₂_
h₁ h₂ :
fhA : FixedHeight₁ h₁
fhB : FixedHeight₂ h₂
⊥₁ : A
⊥₁ = Height.⊥ fhA
⊥₂ : B
⊥₂ = Height.⊥ fhB
⊥k : (k : ) IterProd k
⊥k = build ⊥₁ ⊥₂
record IsFiniteHeightWithBotAndDecEq {A : Set a} {_≈_ : A A Set a} {_⊔_ : A A A} {_⊓_ : A A A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) ( : A) : Set (lsuc a) where
field
height :
fixedHeight : IsLattice.FixedHeight isLattice height
≈-Decidable : IsDecidable _≈_
⊥-correct : Height.⊥ fixedHeight
record Everything (k : ) : Set (lsuc a) where
T = IterProd k
field
_≈_ : T T Set a
_⊔_ : T T T
_⊓_ : T T T
isLattice : IsLattice T _≈_ _⊔_ _⊓_
isFiniteHeightIfSupported :
(req : RequiredForFixedHeight)
IsFiniteHeightWithBotAndDecEq isLattice (RequiredForFixedHeight.⊥k req k)
everything : (k : ) Everything k
everything 0 = record
{ _≈_ = _≈₂_
; _⊔_ = _⊔₂_
; _⊓_ = _⊓₂_
; isLattice = lB
; isFiniteHeightIfSupported = λ req record
{ height = RequiredForFixedHeight.h₂ req
; fixedHeight = RequiredForFixedHeight.fhB req
; ≈-Decidable = RequiredForFixedHeight.≈₂-Decidable req
; ⊥-correct = refl
}
}
everything (suc k') = record
{ _≈_ = P._≈_
; _⊔_ = P._⊔_
; _⊓_ = P._⊓_
; isLattice = P.isLattice
; isFiniteHeightIfSupported = λ req
let
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
in
record
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
; fixedHeight =
P.fixedHeight
(RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
; ≈-Decidable = P.≈-Decidable (RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
; ⊥-correct =
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
}
}
where
everythingRest = everything k'
import Lattice.Prod
_≈₁_ (Everything._≈_ everythingRest)
_⊔₁_ (Everything._⊔_ everythingRest)
_⊓₁_ (Everything._⊓_ everythingRest)
lA (Everything.isLattice everythingRest) as P
module _ {k : } where
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public
open Lattice.IsLattice (Everything.isLattice (everything k)) public
instance
isLattice = Everything.isLattice (everything k)
lattice : Lattice (IterProd k)
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}}
{h₁ h₂ : }
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
private
isFiniteHeightWithBotAndDecEq =
Everything.isFiniteHeightIfSupported (everything k)
record
{ ≈₁-Decidable = ≈₁-Decidable
; ≈₂-Decidable = ≈₂-Decidable
; h₁ = h₁
; h₂ = h₂
; fhA = fhA
; fhB = fhB
}
open IsFiniteHeightWithBotAndDecEq isFiniteHeightWithBotAndDecEq using (height; ⊥-correct)
instance
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight isFiniteHeightWithBotAndDecEq
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice (IterProd k)
finiteHeightLattice = record
{ height = height
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}
⊥-built : Height.⊥ fixedHeight (build (Height.⊥ fhA) (Height.⊥ fhB) k)
⊥-built = ⊥-correct