1122 lines
66 KiB
Agda
1122 lines
66 KiB
Agda
open import Lattice
|
||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
||
open import Relation.Binary.Definitions using (Decidable)
|
||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||
|
||
module Lattice.Map {a b : Level} (A : Set a) (B : Set b)
|
||
(_≈₂_ : B → B → Set b)
|
||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||
|
||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||
|
||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||
open import Data.Nat using (ℕ)
|
||
open import Data.List using (List; map; []; _∷_; _++_)
|
||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||
open import Data.Empty using (⊥; ⊥-elim)
|
||
open import Equivalence
|
||
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||
|
||
open IsLattice lB using () renaming
|
||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||
; ≈-⊔-cong to ≈₂-⊔₂-cong; ≈-⊓-cong to ≈₂-⊓₂-cong
|
||
; ⊔-idemp to ⊔₂-idemp; ⊔-comm to ⊔₂-comm; ⊔-assoc to ⊔₂-assoc
|
||
; ⊓-idemp to ⊓₂-idemp; ⊓-comm to ⊓₂-comm; ⊓-assoc to ⊓₂-assoc
|
||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||
; _≼_ to _≼₂_
|
||
)
|
||
|
||
private module ImplKeys where
|
||
keys : List (A × B) → List A
|
||
keys = map proj₁
|
||
|
||
-- See note on `forget` for why this is defined in global scope even though
|
||
-- it operates on lists.
|
||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ˡ (ImplKeys.keys l))
|
||
∈k-dec k [] = no (λ ())
|
||
∈k-dec k ((k' , v) ∷ xs)
|
||
with (≡-dec-A k k')
|
||
... | yes k≡k' = yes (here k≡k')
|
||
... | no k≢k' with (∈k-dec k xs)
|
||
... | yes k∈kxs = yes (there k∈kxs)
|
||
... | no k∉kxs = no witness
|
||
where
|
||
witness : ¬ k ∈ˡ (ImplKeys.keys ((k' , v) ∷ xs))
|
||
witness (here k≡k') = k≢k' k≡k'
|
||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||
|
||
private module _ where
|
||
open MemProp using (_∈_)
|
||
open ImplKeys
|
||
|
||
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
||
unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) =
|
||
k≢k' (cong proj₁ k',≡x)
|
||
unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) =
|
||
unique-not-in (rest , k,v'∈xs)
|
||
|
||
ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v'
|
||
ListAB-functional _ (here k,v≡x) (here k,v'≡x) =
|
||
cong proj₂ (trans k,v≡x (sym k,v'≡x))
|
||
ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs)
|
||
rewrite sym k,v≡x = ⊥-elim (unique-not-in (k≢xs , k,v'∈xs))
|
||
ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x)
|
||
rewrite sym k,v'≡x = ⊥-elim (unique-not-in (k≢xs , k,v∈xs))
|
||
ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) =
|
||
ListAB-functional uxs k,v∈xs k,v'∈xs
|
||
|
||
k∈-dec : ∀ (k : A) (l : List A) → Dec (k ∈ l)
|
||
k∈-dec k [] = no (λ ())
|
||
k∈-dec k (x ∷ xs)
|
||
with (≡-dec-A k x)
|
||
... | yes refl = yes (here refl)
|
||
... | no k≢x with (k∈-dec k xs)
|
||
... | yes k∈xs = yes (there k∈xs)
|
||
... | no k∉xs = no (λ { (here k≡x) → k≢x k≡x; (there k∈xs) → k∉xs k∈xs })
|
||
|
||
∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} →
|
||
(f : C → D) → c ∈ l → f c ∈ map f l
|
||
∈-cong f (here c≡c') = here (cong f c≡c')
|
||
∈-cong f (there c∈xs) = there (∈-cong f c∈xs)
|
||
|
||
locate-impl : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l)
|
||
locate-impl {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl)
|
||
locate-impl {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate-impl k∈kxs in (v , there k,v∈xs)
|
||
|
||
private module ImplRelation where
|
||
open MemProp using (_∈_)
|
||
|
||
subset : List (A × B) → List (A × B) → Set (a ⊔ℓ b)
|
||
subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ →
|
||
Σ B (λ v' → v ≈₂ v' × ((k , v') ∈ m₂))
|
||
|
||
private module ImplInsert (f : B → B → B) where
|
||
open import Data.List using (map)
|
||
open MemProp using (_∈_)
|
||
open ImplKeys
|
||
|
||
private
|
||
_∈k_ : A → List (A × B) → Set a
|
||
_∈k_ k m = k ∈ (keys m)
|
||
|
||
foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C
|
||
foldr f b [] = b
|
||
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
||
|
||
insert : A → B → List (A × B) → List (A × B)
|
||
insert k v [] = (k , v) ∷ []
|
||
insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||
... | yes _ = (k' , f v v') ∷ xs
|
||
... | no _ = x ∷ insert k v xs
|
||
|
||
union : List (A × B) → List (A × B) → List (A × B)
|
||
union m₁ m₂ = foldr insert m₂ m₁
|
||
|
||
insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
k ∈k l → keys l ≡ keys (insert k v l)
|
||
insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k')
|
||
with (≡-dec-A k k')
|
||
... | yes _ = refl
|
||
... | no k≢k' = ⊥-elim (k≢k' k≡k')
|
||
insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs)
|
||
with (≡-dec-A k k')
|
||
... | yes _ = refl
|
||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs)
|
||
|
||
insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l)
|
||
insert-keys-∉ {k} {v} {[]} _ = refl
|
||
insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl
|
||
with (≡-dec-A k k')
|
||
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
||
... | no _ = cong (λ xs' → k' ∷ xs')
|
||
(insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs)))
|
||
|
||
insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)}
|
||
→ Unique (keys l) → Unique (keys (insert k v l))
|
||
insert-preserves-Unique {k} {v} {l} u
|
||
with (∈k-dec k l)
|
||
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
|
||
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
|
||
|
||
union-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
All (λ k → k ∈k l₂) (keys l₁) →
|
||
keys l₂ ≡ keys (union l₁ l₂)
|
||
union-subset-keys {[]} _ = refl
|
||
union-subset-keys {(k , v) ∷ l₁'} (k∈kl₂ ∷ kl₁'⊆kl₂)
|
||
rewrite union-subset-keys kl₁'⊆kl₂ =
|
||
insert-keys-∈ k∈kl₂
|
||
|
||
union-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂)
|
||
union-equal-keys {l₁} {l₂} kl₁≡kl₂
|
||
with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁))
|
||
... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂)
|
||
|
||
union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) →
|
||
Unique (keys l₂) → Unique (keys (union l₁ l₂))
|
||
union-preserves-Unique [] l₂ u₂ = u₂
|
||
union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ =
|
||
insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂)
|
||
|
||
insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
¬ k ∈k l → (k , v) ∈ insert k v l
|
||
insert-fresh {l = []} k∉kl = here refl
|
||
insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
||
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
||
|
||
insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l
|
||
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
||
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
|
||
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
||
with ≡-dec-A k k''
|
||
... | yes k≡k'' = k∉kl (here k≡k'')
|
||
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
||
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
||
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
||
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
||
... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k'
|
||
(λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs
|
||
|
||
union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂
|
||
union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂
|
||
union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' = ⊥-elim (k∉kl₁ (here k≡k'))
|
||
... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
||
|
||
insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||
k ∈k l → k ∈k insert k' v' l
|
||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'')
|
||
with (≡-dec-A k' k'')
|
||
... | yes _ = here k≡k''
|
||
... | no _ = here k≡k''
|
||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs)
|
||
with (≡-dec-A k' k'')
|
||
... | yes _ = there k∈kxs
|
||
... | no _ = there (insert-preserves-∈k k∈kxs)
|
||
|
||
union-preserves-∈k₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₁ → k ∈k (union l₁ l₂)
|
||
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (here k≡k')
|
||
with ∈k-dec k (union xs l₂)
|
||
... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂
|
||
... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂)
|
||
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (there k∈kxs) =
|
||
insert-preserves-∈k (union-preserves-∈k₁ k∈kxs)
|
||
|
||
union-preserves-∈k₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₂ → k ∈k (union l₁ l₂)
|
||
union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂
|
||
union-preserves-∈k₂ {k} {(k' , v') ∷ xs} {l₂} k∈kl₂ =
|
||
insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂)
|
||
|
||
∉-union-∉-either : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k union l₁ l₂ → ¬ k ∈k l₁ × ¬ k ∈k l₂
|
||
∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂
|
||
with ∈k-dec k l₁
|
||
... | yes k∈kl₁ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁))
|
||
... | no k∉kl₁ with ∈k-dec k l₂
|
||
... | yes k∈kl₂ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂))
|
||
... | no k∉kl₂ = (k∉kl₁ , k∉kl₂)
|
||
|
||
|
||
insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l
|
||
insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x)
|
||
rewrite sym k,v=x with ≡-dec-A k' k
|
||
... | yes k'≡k = ⊥-elim (k≢k' (sym k'≡k))
|
||
... | no _ = here refl
|
||
insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs)
|
||
with ≡-dec-A k' k''
|
||
... | yes _ = there k,v∈xs
|
||
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
|
||
|
||
union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂
|
||
union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
|
||
union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ =
|
||
let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂
|
||
in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion
|
||
|
||
union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂
|
||
union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
|
||
insert-preserves-∈ k≢k' k,v∈mxs₁l
|
||
where
|
||
k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂
|
||
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
||
... | no k≢k' = k≢k'
|
||
union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
||
insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
|
||
|
||
insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l)
|
||
insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'')
|
||
rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v''
|
||
with ≡-dec-A k' k'
|
||
... | yes _ = here refl
|
||
... | no k≢k' = ⊥-elim (k≢k' refl)
|
||
insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs)
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
||
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
||
|
||
union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → Unique (keys l₂) →
|
||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂
|
||
union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
|
||
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
|
||
insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
|
||
union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
|
||
insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
||
where
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
||
... | no k≢k' = k≢k'
|
||
|
||
update : A → B → List (A × B) → List (A × B)
|
||
update k v [] = []
|
||
update k v ((k' , v') ∷ xs) with ≡-dec-A k k'
|
||
... | yes _ = (k' , f v v') ∷ xs
|
||
... | no _ = (k' , v') ∷ update k v xs
|
||
|
||
updates : List (A × B) → List (A × B) → List (A × B)
|
||
updates l₁ l₂ = foldr update l₂ l₁
|
||
|
||
restrict : List (A × B) → List (A × B) → List (A × B)
|
||
restrict l [] = []
|
||
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
||
... | yes _ = (k' , v') ∷ restrict l xs
|
||
... | no _ = restrict l xs
|
||
|
||
intersect : List (A × B) → List (A × B) → List (A × B)
|
||
intersect l₁ l₂ = restrict l₁ (updates l₁ l₂)
|
||
|
||
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
keys l ≡ keys (update k v l)
|
||
update-keys {l = []} = refl
|
||
update-keys {k} {v} {l = (k' , v') ∷ xs}
|
||
with ≡-dec-A k k'
|
||
... | yes _ = refl
|
||
... | no _ rewrite update-keys {k} {v} {xs} = refl
|
||
|
||
updates-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
keys l₂ ≡ keys (updates l₁ l₂)
|
||
updates-keys {[]} = refl
|
||
updates-keys {(k , v) ∷ xs} {l₂}
|
||
rewrite updates-keys {xs} {l₂}
|
||
rewrite update-keys {k} {v} {updates xs l₂} = refl
|
||
|
||
update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||
Unique (keys l) → Unique (keys (update k v l ))
|
||
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
||
|
||
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (updates l₁ l₂))
|
||
updates-preserve-Unique {[]} u = u
|
||
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
||
|
||
restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂))
|
||
restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂
|
||
restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs)
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs
|
||
... | no _ = restrict-preserves-k≢ k≢xs
|
||
|
||
restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (restrict l₁ l₂))
|
||
restrict-preserves-Unique {l₁} {[]} _ = Utils.empty
|
||
restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs)
|
||
with ∈k-dec k l₁
|
||
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
|
||
... | no _ = restrict-preserves-Unique uxs
|
||
|
||
intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
||
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
||
|
||
updates-preserve-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k updates l₁ l₂
|
||
updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂
|
||
rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂
|
||
|
||
restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂)
|
||
restrict-needs-both {k} {l₁} {[]} ()
|
||
restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂
|
||
with ∈k-dec k' l₁ | k∈l₁l₂
|
||
... | yes k'∈kl₁ | here k≡k'
|
||
rewrite k≡k' =
|
||
(k'∈kl₁ , here refl)
|
||
... | yes _ | there k∈l₁xs =
|
||
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||
in (k∈kl₁ , there k∈kxs)
|
||
... | no k'∉kl₁ | k∈l₁xs =
|
||
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||
in (k∈kl₁ , there k∈kxs)
|
||
|
||
restrict-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
All (λ k → k ∈k l₁) (keys l₂) →
|
||
keys l₂ ≡ keys (restrict l₁ l₂)
|
||
restrict-subset-keys {l₁} {[]} _ = refl
|
||
restrict-subset-keys {l₁} {(k , v) ∷ l₂'} (k∈kl₁ ∷ kl₂'⊆kl₁)
|
||
with ∈k-dec k l₁
|
||
... | no k∉kl₁ = ⊥-elim (k∉kl₁ k∈kl₁)
|
||
... | yes _ rewrite restrict-subset-keys {l₁} {l₂'} kl₂'⊆kl₁ = refl
|
||
|
||
restrict-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
keys l₁ ≡ keys l₂ →
|
||
keys l₁ ≡ keys (restrict l₁ l₂)
|
||
restrict-equal-keys {l₁} {l₂} kl₁≡kl₂
|
||
with subst (λ l → All (λ k → k ∈ l) (keys l₂)) (sym kl₁≡kl₂) (All-x∈xs (keys l₂))
|
||
... | kl₂⊆kl₁ = trans kl₁≡kl₂ (restrict-subset-keys {l₁} {l₂} kl₂⊆kl₁)
|
||
|
||
intersect-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||
keys l₁ ≡ keys l₂ →
|
||
keys l₁ ≡ keys (intersect l₁ l₂)
|
||
intersect-equal-keys {l₁} {l₂} kl₁≡kl₂
|
||
rewrite restrict-equal-keys (trans kl₁≡kl₂ (updates-keys {l₁} {l₂}))
|
||
rewrite updates-keys {l₁} {l₂} = refl
|
||
|
||
restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂
|
||
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
|
||
let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁
|
||
|
||
restrict-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k restrict l₁ l₂
|
||
restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ =
|
||
let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂
|
||
|
||
intersect-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → ¬ k ∈k intersect l₁ l₂
|
||
intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂}
|
||
|
||
intersect-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₂ → ¬ k ∈k intersect l₁ l₂
|
||
intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ )
|
||
|
||
restrict-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ restrict l₁ l₂
|
||
restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') ∷ xs} k∈kl₁ (here k,v≡k',v')
|
||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v'
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = here refl
|
||
... | no k'∉kl₁ = ⊥-elim (k'∉kl₁ k∈kl₁)
|
||
restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') ∷ xs} k∈kl₁ (there k,v∈xs)
|
||
with ∈k-dec k' l₁
|
||
... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs)
|
||
... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs
|
||
|
||
update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l
|
||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'')
|
||
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
|
||
with ≡-dec-A k' k''
|
||
... | yes k'≡k'' = ⊥-elim (k≢k' (sym k'≡k''))
|
||
... | no _ = here refl
|
||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs)
|
||
with ≡-dec-A k' k''
|
||
... | yes _ = there k,v∈xs
|
||
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
|
||
|
||
updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂
|
||
updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂
|
||
updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ =
|
||
update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂)
|
||
|
||
update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||
Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l
|
||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'')
|
||
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
|
||
with ≡-dec-A k' k'
|
||
... | yes _ = here refl
|
||
... | no k'≢k' = ⊥-elim (k'≢k' refl)
|
||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs)
|
||
with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
|
||
... | no _ = there (update-combines uxs k,v∈xs)
|
||
|
||
updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → Unique (keys l₂) →
|
||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂
|
||
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂
|
||
rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' =
|
||
update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂)
|
||
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ =
|
||
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
|
||
where
|
||
k≢k' : ¬ k ≡ k'
|
||
k≢k' with ≡-dec-A k k'
|
||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
|
||
... | no k≢k' = k≢k'
|
||
|
||
intersect-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||
Unique (keys l₁) → Unique (keys l₂) →
|
||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ intersect l₁ l₂
|
||
intersect-combines u₁ u₂ k,v₁∈l₁ k,v₂∈l₂ =
|
||
restrict-preserves-∈₂ (∈-cong proj₁ k,v₁∈l₁) (updates-combine u₁ u₂ k,v₁∈l₁ k,v₂∈l₂)
|
||
|
||
Map : Set (a ⊔ℓ b)
|
||
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
||
|
||
empty : Map
|
||
empty = ([] , Utils.empty)
|
||
|
||
keys : Map → List A
|
||
keys (kvs , _) = ImplKeys.keys kvs
|
||
|
||
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
||
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
||
|
||
_∈k_ : A → Map → Set a
|
||
_∈k_ k m = MemProp._∈_ k (keys m)
|
||
|
||
locate : ∀ {k : A} {m : Map} → k ∈k m → Σ B (λ v → (k , v) ∈ m)
|
||
locate k∈km = locate-impl k∈km
|
||
|
||
-- `forget` and `∈k-dec` are defined this way because ∈ for maps uses
|
||
-- projection, so the full map can't be guessed. On the other hand, list can
|
||
-- be guessed.
|
||
forget : ∀ {k : A} {v : B} {l : List (A × B)} → (k , v) ∈ˡ l → k ∈ˡ (ImplKeys.keys l)
|
||
forget = ∈-cong proj₁
|
||
|
||
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
||
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
||
|
||
open ImplRelation using () renaming (subset to subset-impl) public
|
||
|
||
_⊆_ : Map → Map → Set (a ⊔ℓ b)
|
||
_⊆_ (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
|
||
|
||
⊆-refl : (m : Map) → m ⊆ m
|
||
⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
|
||
|
||
⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃
|
||
⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
|
||
let
|
||
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
||
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
|
||
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
|
||
|
||
_≈_ : Map → Map → Set (a ⊔ℓ b)
|
||
_≈_ m₁ m₂ = m₁ ⊆ m₂ × m₂ ⊆ m₁
|
||
|
||
≈-equiv : IsEquivalence Map _≈_
|
||
≈-equiv = record
|
||
{ ≈-refl = λ {m} → (⊆-refl m , ⊆-refl m)
|
||
; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) → (m₂⊆m₁ , m₁⊆m₂)
|
||
; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) →
|
||
( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃
|
||
, ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁
|
||
)
|
||
}
|
||
|
||
data Expr : Set (a ⊔ℓ b) where
|
||
`_ : Map → Expr
|
||
_∪_ : Expr → Expr → Expr
|
||
_∩_ : Expr → Expr → Expr
|
||
|
||
open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys; insert-preserves-Unique) renaming (insert to insert-impl; union to union-impl)
|
||
open ImplInsert _⊓₂_ using (intersect-preserves-Unique; intersect-equal-keys) renaming (intersect to intersect-impl)
|
||
|
||
insert : A → B → Map → Map
|
||
insert k v (l , uks) = (insert-impl k v l , insert-preserves-Unique uks)
|
||
|
||
_⊔_ : Map → Map → Map
|
||
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||
|
||
_⊓_ : Map → Map → Map
|
||
_⊓_ (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
|
||
|
||
open ImplInsert _⊔₂_ using
|
||
( union-combines
|
||
; union-preserves-∈₁
|
||
; union-preserves-∈₂
|
||
; union-preserves-∉
|
||
; union-preserves-∈k₁
|
||
; union-preserves-∈k₂
|
||
)
|
||
|
||
⊔-combines : ∀ {k : A} {v₁ v₂ : B} {m₁ m₂ : Map} → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → (k , v₁ ⊔₂ v₂) ∈ (m₁ ⊔ m₂)
|
||
⊔-combines {k} {v₁} {v₂} {kvs₁ , u₁} {kvs₂ , u₂} k,v₁∈m₁ k,v₂∈m₂ = union-combines u₁ u₂ k,v₁∈m₁ k,v₂∈m₂
|
||
|
||
⊔-preserves-∈k₁ : ∀ {k : A} → {m₁ m₂ : Map} → k ∈k m₁ → k ∈k (m₁ ⊔ m₂)
|
||
⊔-preserves-∈k₁ {k} {(l₁ , _)} {(l₂ , _)} k∈km₁ = union-preserves-∈k₁ {l₁ = l₁} {l₂ = l₂} k∈km₁
|
||
|
||
⊔-preserves-∈k₂ : ∀ {k : A} → {m₁ m₂ : Map} → k ∈k m₂ → k ∈k (m₁ ⊔ m₂)
|
||
⊔-preserves-∈k₂ {k} {(l₁ , _)} {(l₂ , _)} k∈km₁ = union-preserves-∈k₂ {l₁ = l₁} {l₂ = l₂} k∈km₁
|
||
|
||
open ImplInsert _⊓₂_ using
|
||
( restrict-needs-both
|
||
; updates
|
||
; intersect-preserves-∉₁
|
||
; intersect-preserves-∉₂
|
||
; intersect-combines
|
||
)
|
||
|
||
⟦_⟧ : Expr -> Map
|
||
⟦ ` m ⟧ = m
|
||
⟦ e₁ ∪ e₂ ⟧ = ⟦ e₁ ⟧ ⊔ ⟦ e₂ ⟧
|
||
⟦ e₁ ∩ e₂ ⟧ = ⟦ e₁ ⟧ ⊓ ⟦ e₂ ⟧
|
||
|
||
data Provenance (k : A) : B → Expr → Set (a ⊔ℓ b) where
|
||
single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m)
|
||
in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂)
|
||
in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂)
|
||
bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (v₁ ⊔₂ v₂) (e₁ ∪ e₂)
|
||
bothⁱ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (v₁ ⊓₂ v₂) (e₁ ∩ e₂)
|
||
|
||
Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧))
|
||
Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate-impl k∈km in (v , (single k,v∈m , k,v∈m))
|
||
Expr-Provenance k (e₁ ∪ e₂) k∈ke₁e₂
|
||
with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧)
|
||
... | yes k∈ke₁ | yes k∈ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (v₁ ⊔₂ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂))
|
||
... | yes k∈ke₁ | no k∉ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂))
|
||
... | no k∉ke₁ | yes k∈ke₂ =
|
||
let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂))
|
||
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂)
|
||
Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
||
with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧)
|
||
... | yes k∈ke₁ | yes k∈ke₂ =
|
||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||
in (v₁ ⊓₂ v₂ , (bothⁱ g₁ g₂ , intersect-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂))
|
||
... | yes k∈ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
||
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||
|
||
Expr-Provenance-≡ : ∀ {k : A} {v : B} (e : Expr) → (k , v) ∈ ⟦ e ⟧ → Provenance k v e
|
||
Expr-Provenance-≡ {k} {v} e k,v∈e
|
||
with (v' , (p , k,v'∈e)) ← Expr-Provenance k e (forget k,v∈e)
|
||
rewrite Map-functional {m = ⟦ e ⟧} k,v∈e k,v'∈e = p
|
||
|
||
module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||
private module _ where
|
||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||
mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂
|
||
fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂
|
||
|
||
SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
|
||
let (v , k,v∈m₁) = locate-impl k∈km₁
|
||
in no (λ m₁⊆m₂ →
|
||
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
||
in k∉km₂ (forget k,v'∈m₂))
|
||
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
|
||
no (λ m₁⊆m₂ →
|
||
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
|
||
in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
|
||
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
|
||
|
||
compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂
|
||
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
|
||
compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
|
||
with compute-SubsetInfo (xs₁ , uxs₁) m₂
|
||
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
|
||
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
|
||
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
|
||
... | fine xs₁⊆m₂ with ∈k-dec k l₂
|
||
... | no k∉km₂ = extra k (here refl) k∉km₂
|
||
... | yes k∈km₂ with locate-impl k∈km₂
|
||
... | (v' , k,v'∈m₂) with ≈₂-dec v v'
|
||
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
|
||
... | yes v≈v' = fine m₁⊆m₂
|
||
where
|
||
m₁⊆m₂ : m₁ ⊆ m₂
|
||
m₁⊆m₂ k' v'' (here k,v≡k',v'')
|
||
rewrite cong proj₁ k,v≡k',v''
|
||
rewrite cong proj₂ k,v≡k',v'' =
|
||
(v' , (v≈v' , k,v'∈m₂))
|
||
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
|
||
xs₁⊆m₂ k' v'' k,v≡k',v''
|
||
|
||
⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||
⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
|
||
|
||
≈-dec : ∀ m₁ m₂ → Dec (m₁ ≈ m₂)
|
||
≈-dec m₁ m₂
|
||
with ⊆-dec m₁ m₂ | ⊆-dec m₂ m₁
|
||
... | yes m₁⊆m₂ | yes m₂⊆m₁ = yes (m₁⊆m₂ , m₂⊆m₁)
|
||
... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) → m₂̷⊆m₁ m₂⊆m₁)
|
||
... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) → m₁̷⊆m₂ m₁⊆m₂)
|
||
|
||
private module I⊔ = ImplInsert _⊔₂_
|
||
private module I⊓ = ImplInsert _⊓₂_
|
||
|
||
≈-⊔-cong : ∀ {m₁ m₂ m₃ m₄ : Map} → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊔ m₃) ≈ (m₂ ⊔ m₄)
|
||
≈-⊔-cong {m₁} {m₂} {m₃} {m₄} (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) =
|
||
( ⊔-⊆ m₁ m₂ m₃ m₄ (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃)
|
||
, ⊔-⊆ m₂ m₁ m₄ m₃ (m₂⊆m₁ , m₁⊆m₂) (m₄⊆m₃ , m₃⊆m₄)
|
||
)
|
||
where
|
||
≈-∉-cong : ∀ {m₁ m₂ : Map} {k : A} → m₁ ≈ m₂ → ¬ k ∈k m₁ → ¬ k ∈k m₂
|
||
≈-∉-cong (m₁⊆m₂ , m₂⊆m₁) k∉km₁ k∈km₂ =
|
||
let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂
|
||
(_ , (_ , k,v₁∈m₁)) = m₂⊆m₁ _ v₂ k,v₂∈m₂
|
||
in k∉km₁ (∈-cong proj₁ k,v₁∈m₁)
|
||
|
||
⊔-⊆ : ∀ (m₁ m₂ m₃ m₄ : Map) → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊔ m₃) ⊆ (m₂ ⊔ m₄)
|
||
⊔-⊆ m₁ m₂ m₃ m₄ m₁≈m₂ m₃≈m₄ k v k,v∈m₁m₃
|
||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₃)) k,v∈m₁m₃
|
||
... | bothᵘ (single {v₁} v₁∈m₁) (single {v₃} v₃∈m₃) =
|
||
let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁
|
||
(v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃
|
||
in (v₂ ⊔₂ v₄ , (≈₂-⊔₂-cong v₁≈v₂ v₃≈v₄ , I⊔.union-combines (proj₂ m₂) (proj₂ m₄) k,v₂∈m₂ k,v₄∈m₄))
|
||
... | in₁ (single {v₁} v₁∈m₁) k∉km₃ =
|
||
let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁
|
||
k∉km₄ = ≈-∉-cong {m₃} {m₄} m₃≈m₄ k∉km₃
|
||
in (v₂ , (v₁≈v₂ , I⊔.union-preserves-∈₁ (proj₂ m₂) k,v₂∈m₂ k∉km₄))
|
||
... | in₂ k∉km₁ (single {v₃} v₃∈m₃) =
|
||
let (v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃
|
||
k∉km₂ = ≈-∉-cong {m₁} {m₂} m₁≈m₂ k∉km₁
|
||
in (v₄ , (v₃≈v₄ , I⊔.union-preserves-∈₂ k∉km₂ k,v₄∈m₄))
|
||
|
||
≈-⊓-cong : ∀ {m₁ m₂ m₃ m₄ : Map} → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊓ m₃) ≈ (m₂ ⊓ m₄)
|
||
≈-⊓-cong {m₁} {m₂} {m₃} {m₄} (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃) =
|
||
( ⊓-⊆ m₁ m₂ m₃ m₄ (m₁⊆m₂ , m₂⊆m₁) (m₃⊆m₄ , m₄⊆m₃)
|
||
, ⊓-⊆ m₂ m₁ m₄ m₃ (m₂⊆m₁ , m₁⊆m₂) (m₄⊆m₃ , m₃⊆m₄)
|
||
)
|
||
where
|
||
⊓-⊆ : ∀ (m₁ m₂ m₃ m₄ : Map) → m₁ ≈ m₂ → m₃ ≈ m₄ → (m₁ ⊓ m₃) ⊆ (m₂ ⊓ m₄)
|
||
⊓-⊆ m₁ m₂ m₃ m₄ m₁≈m₂ m₃≈m₄ k v k,v∈m₁m₃
|
||
with Expr-Provenance-≡ ((` m₁) ∩ (` m₃)) k,v∈m₁m₃
|
||
... | bothⁱ (single {v₁} v₁∈m₁) (single {v₃} v₃∈m₃) =
|
||
let (v₂ , (v₁≈v₂ , k,v₂∈m₂)) = proj₁ m₁≈m₂ k v₁ v₁∈m₁
|
||
(v₄ , (v₃≈v₄ , k,v₄∈m₄)) = proj₁ m₃≈m₄ k v₃ v₃∈m₃
|
||
in (v₂ ⊓₂ v₄ , (≈₂-⊓₂-cong v₁≈v₂ v₃≈v₄ , I⊓.intersect-combines (proj₂ m₂) (proj₂ m₄) k,v₂∈m₂ k,v₄∈m₄))
|
||
|
||
⊔-idemp : ∀ (m : Map) → (m ⊔ m) ≈ m
|
||
⊔-idemp m@(l , u) = (mm-m-⊆ , m-mm-⊆)
|
||
where
|
||
mm-m-⊆ : (m ⊔ m) ⊆ m
|
||
mm-m-⊆ k v k,v∈mm
|
||
with Expr-Provenance-≡ ((` m) ∪ (` m)) k,v∈mm
|
||
... | bothᵘ (single {v'} v'∈m) (single {v''} v''∈m)
|
||
rewrite Map-functional {m = m} v'∈m v''∈m =
|
||
(v'' , (⊔₂-idemp v'' , v''∈m))
|
||
... | in₁ (single {v'} v'∈m) k∉km = ⊥-elim (k∉km (∈-cong proj₁ v'∈m))
|
||
... | in₂ k∉km (single {v''} v''∈m) = ⊥-elim (k∉km (∈-cong proj₁ v''∈m))
|
||
|
||
m-mm-⊆ : m ⊆ (m ⊔ m)
|
||
m-mm-⊆ k v k,v∈m = (v ⊔₂ v , (≈₂-sym (⊔₂-idemp v) , I⊔.union-combines u u k,v∈m k,v∈m))
|
||
|
||
⊔-comm : ∀ (m₁ m₂ : Map) → (m₁ ⊔ m₂) ≈ (m₂ ⊔ m₁)
|
||
⊔-comm m₁ m₂ = (⊔-comm-⊆ m₁ m₂ , ⊔-comm-⊆ m₂ m₁)
|
||
where
|
||
⊔-comm-⊆ : ∀ (m₁ m₂ : Map) → (m₁ ⊔ m₂) ⊆ (m₂ ⊔ m₁)
|
||
⊔-comm-⊆ m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈m₁m₂
|
||
... | bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) =
|
||
(v₂ ⊔₂ v₁ , (⊔₂-comm v₁ v₂ , I⊔.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
||
... | in₁ {v₁} (single v₁∈m₁) k∉km₂ =
|
||
(v₁ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉km₂ v₁∈m₁))
|
||
... | in₂ {v₂} k∉km₁ (single v₂∈m₂) =
|
||
(v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁))
|
||
|
||
⊔-assoc : ∀ (m₁ m₂ m₃ : Map) → ((m₁ ⊔ m₂) ⊔ m₃) ≈ (m₁ ⊔ (m₂ ⊔ m₃))
|
||
⊔-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (⊔-assoc₁ , ⊔-assoc₂)
|
||
where
|
||
⊔-assoc₁ : ((m₁ ⊔ m₂) ⊔ m₃) ⊆ (m₁ ⊔ (m₂ ⊔ m₃))
|
||
⊔-assoc₁ k v k,v∈m₁₂m₃
|
||
with Expr-Provenance-≡ (((` m₁) ∪ (` m₂)) ∪ (` m₃)) k,v∈m₁₂m₃
|
||
... | in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) =
|
||
let (k∉ke₁ , k∉ke₂) = I⊔.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
||
in (v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||
... | in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ =
|
||
(v₂ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||
... | bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) =
|
||
(v₂ ⊔₂ v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ k∉ke₁ (I⊔.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||
... | in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ =
|
||
(v₁ , (≈₂-refl , I⊔.union-preserves-∈₁ u₁ v₁∈e₁ (I⊔.union-preserves-∉ k∉ke₂ k∉ke₃)))
|
||
... | bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) =
|
||
(v₁ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||
... | in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃ =
|
||
(v₁ ⊔₂ v₂ , (≈₂-refl , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||
... | bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) =
|
||
(v₁ ⊔₂ (v₂ ⊔₂ v₃) , (⊔₂-assoc v₁ v₂ v₃ , I⊔.union-combines u₁ (I⊔.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I⊔.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||
|
||
⊔-assoc₂ : (m₁ ⊔ (m₂ ⊔ m₃)) ⊆ ((m₁ ⊔ m₂) ⊔ m₃)
|
||
⊔-assoc₂ k v k,v∈m₁m₂₃
|
||
with Expr-Provenance-≡ ((` m₁) ∪ ((` m₂) ∪ (` m₃))) k,v∈m₁m₂₃
|
||
... | in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) =
|
||
(v₃ , (≈₂-refl , I⊔.union-preserves-∈₂ (I⊔.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
||
... | in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) =
|
||
(v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃))
|
||
... | in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) =
|
||
(v₂ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃))
|
||
... | in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ =
|
||
let (k∉ke₂ , k∉ke₃) = I⊔.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃
|
||
in (v₁ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃))
|
||
... | bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) =
|
||
(v₁ ⊔₂ v₃ , (≈₂-refl , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃))
|
||
... | bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) =
|
||
(v₁ ⊔₂ v₂ , (≈₂-refl , I⊔.union-preserves-∈₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) (I⊔.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃))
|
||
... | bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) =
|
||
((v₁ ⊔₂ v₂) ⊔₂ v₃ , (≈₂-sym (⊔₂-assoc v₁ v₂ v₃) , I⊔.union-combines (I⊔.union-preserves-Unique l₁ l₂ u₂) u₃ (I⊔.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
|
||
|
||
⊓-idemp : ∀ (m : Map) → (m ⊓ m) ≈ m
|
||
⊓-idemp m@(l , u) = (mm-m-⊆ , m-mm-⊆)
|
||
where
|
||
mm-m-⊆ : (m ⊓ m) ⊆ m
|
||
mm-m-⊆ k v k,v∈mm
|
||
with Expr-Provenance-≡ ((` m) ∩ (` m)) k,v∈mm
|
||
... | bothⁱ (single {v'} v'∈m) (single {v''} v''∈m)
|
||
rewrite Map-functional {m = m} v'∈m v''∈m =
|
||
(v'' , (⊓₂-idemp v'' , v''∈m))
|
||
|
||
m-mm-⊆ : m ⊆ (m ⊓ m)
|
||
m-mm-⊆ k v k,v∈m = (v ⊓₂ v , (≈₂-sym (⊓₂-idemp v) , I⊓.intersect-combines u u k,v∈m k,v∈m))
|
||
|
||
⊓-comm : ∀ (m₁ m₂ : Map) → (m₁ ⊓ m₂) ≈ (m₂ ⊓ m₁)
|
||
⊓-comm m₁ m₂ = (⊓-comm-⊆ m₁ m₂ , ⊓-comm-⊆ m₂ m₁)
|
||
where
|
||
⊓-comm-⊆ : ∀ (m₁ m₂ : Map) → (m₁ ⊓ m₂) ⊆ (m₂ ⊓ m₁)
|
||
⊓-comm-⊆ m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
||
with Expr-Provenance-≡ ((` m₁) ∩ (` m₂)) k,v∈m₁m₂
|
||
... | bothⁱ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) =
|
||
(v₂ ⊓₂ v₁ , (⊓₂-comm v₁ v₂ , I⊓.intersect-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
||
|
||
⊓-assoc : ∀ (m₁ m₂ m₃ : Map) → ((m₁ ⊓ m₂) ⊓ m₃) ≈ (m₁ ⊓ (m₂ ⊓ m₃))
|
||
⊓-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (⊓-assoc₁ , ⊓-assoc₂)
|
||
where
|
||
⊓-assoc₁ : ((m₁ ⊓ m₂) ⊓ m₃) ⊆ (m₁ ⊓ (m₂ ⊓ m₃))
|
||
⊓-assoc₁ k v k,v∈m₁₂m₃
|
||
with Expr-Provenance-≡ (((` m₁) ∩ (` m₂)) ∩ (` m₃)) k,v∈m₁₂m₃
|
||
... | bothⁱ (bothⁱ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) =
|
||
(v₁ ⊓₂ (v₂ ⊓₂ v₃) , (⊓₂-assoc v₁ v₂ v₃ , I⊓.intersect-combines u₁ (I⊓.intersect-preserves-Unique {l₂} {l₃} u₃) v₁∈e₁ (I⊓.intersect-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||
|
||
⊓-assoc₂ : (m₁ ⊓ (m₂ ⊓ m₃)) ⊆ ((m₁ ⊓ m₂) ⊓ m₃)
|
||
⊓-assoc₂ k v k,v∈m₁m₂₃
|
||
with Expr-Provenance-≡ ((` m₁) ∩ ((` m₂) ∩ (` m₃))) k,v∈m₁m₂₃
|
||
... | bothⁱ (single {v₁} v₁∈e₁) (bothⁱ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) =
|
||
((v₁ ⊓₂ v₂) ⊓₂ v₃ , (≈₂-sym (⊓₂-assoc v₁ v₂ v₃) , I⊓.intersect-combines (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) u₃ (I⊓.intersect-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
|
||
|
||
absorb-⊓-⊔ : ∀ (m₁ m₂ : Map) → (m₁ ⊓ (m₁ ⊔ m₂)) ≈ m₁
|
||
absorb-⊓-⊔ m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (absorb-⊓-⊔¹ , absorb-⊓-⊔²)
|
||
where
|
||
absorb-⊓-⊔¹ : (m₁ ⊓ (m₁ ⊔ m₂)) ⊆ m₁
|
||
absorb-⊓-⊔¹ k v k,v∈m₁m₁₂
|
||
with Expr-Provenance-≡ ((` m₁) ∩ ((` m₁) ∪ (` m₂))) k,v∈m₁m₁₂
|
||
... | bothⁱ (single {v₁} k,v₁∈m₁)
|
||
(bothᵘ (single {v₁'} k,v₁'∈m₁)
|
||
(single {v₂} v₂∈m₂))
|
||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ =
|
||
(v₁' , (absorb-⊓₂-⊔₂ v₁' v₂ , k,v₁'∈m₁))
|
||
... | bothⁱ (single {v₁} k,v₁∈m₁)
|
||
(in₁ (single {v₁'} k,v₁'∈m₁) _)
|
||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ =
|
||
(v₁' , (⊓₂-idemp v₁' , k,v₁'∈m₁))
|
||
... | bothⁱ (single {v₁} k,v₁∈m₁)
|
||
(in₂ k∉m₁ _ ) = ⊥-elim (k∉m₁ (∈-cong proj₁ k,v₁∈m₁))
|
||
|
||
absorb-⊓-⊔² : m₁ ⊆ (m₁ ⊓ (m₁ ⊔ m₂))
|
||
absorb-⊓-⊔² k v k,v∈m₁
|
||
with ∈k-dec k l₂
|
||
... | yes k∈km₂ =
|
||
let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂
|
||
in (v ⊓₂ (v ⊔₂ v₂) , (≈₂-sym (absorb-⊓₂-⊔₂ v v₂) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||
... | no k∉km₂ = (v ⊓₂ v , (≈₂-sym (⊓₂-idemp v) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-preserves-∈₁ u₁ k,v∈m₁ k∉km₂)))
|
||
|
||
absorb-⊔-⊓ : ∀ (m₁ m₂ : Map) → (m₁ ⊔ (m₁ ⊓ m₂)) ≈ m₁
|
||
absorb-⊔-⊓ m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (absorb-⊔-⊓¹ , absorb-⊔-⊓²)
|
||
where
|
||
absorb-⊔-⊓¹ : (m₁ ⊔ (m₁ ⊓ m₂)) ⊆ m₁
|
||
absorb-⊔-⊓¹ k v k,v∈m₁m₁₂
|
||
with Expr-Provenance-≡ ((` m₁) ∪ ((` m₁) ∩ (` m₂))) k,v∈m₁m₁₂
|
||
... | bothᵘ (single {v₁} k,v₁∈m₁)
|
||
(bothⁱ (single {v₁'} k,v₁'∈m₁)
|
||
(single {v₂} k,v₂∈m₂))
|
||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁ =
|
||
(v₁' , (absorb-⊔₂-⊓₂ v₁' v₂ , k,v₁'∈m₁))
|
||
... | in₁ (single {v₁} k,v₁∈m₁) k∉km₁₂ =
|
||
(v₁ , (≈₂-refl , k,v₁∈m₁))
|
||
... | in₂ k∉km₁ (bothⁱ (single {v₁'} k,v₁'∈m₁)
|
||
(single {v₂} k,v₂∈m₂)) =
|
||
⊥-elim (k∉km₁ (∈-cong proj₁ k,v₁'∈m₁))
|
||
|
||
absorb-⊔-⊓² : m₁ ⊆ (m₁ ⊔ (m₁ ⊓ m₂))
|
||
absorb-⊔-⊓² k v k,v∈m₁
|
||
with ∈k-dec k l₂
|
||
... | yes k∈km₂ =
|
||
let (v₂ , k,v₂∈m₂) = locate-impl k∈km₂
|
||
in (v ⊔₂ (v ⊓₂ v₂) , (≈₂-sym (absorb-⊔₂-⊓₂ v v₂) , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||
... | no k∉km₂ = (v , (≈₂-refl , I⊔.union-preserves-∈₁ u₁ k,v∈m₁ (I⊓.intersect-preserves-∉₂ {k} {l₁} {l₂} k∉km₂)))
|
||
|
||
isUnionSemilattice : IsSemilattice Map _≈_ _⊔_
|
||
isUnionSemilattice = record
|
||
{ ≈-equiv = ≈-equiv
|
||
; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ → ≈-⊔-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||
; ⊔-assoc = ⊔-assoc
|
||
; ⊔-comm = ⊔-comm
|
||
; ⊔-idemp = ⊔-idemp
|
||
}
|
||
|
||
isIntersectSemilattice : IsSemilattice Map _≈_ _⊓_
|
||
isIntersectSemilattice = record
|
||
{ ≈-equiv = ≈-equiv
|
||
; ≈-⊔-cong = λ {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄ → ≈-⊓-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||
; ⊔-assoc = ⊓-assoc
|
||
; ⊔-comm = ⊓-comm
|
||
; ⊔-idemp = ⊓-idemp
|
||
}
|
||
|
||
isLattice : IsLattice Map _≈_ _⊔_ _⊓_
|
||
isLattice = record
|
||
{ joinSemilattice = isUnionSemilattice
|
||
; meetSemilattice = isIntersectSemilattice
|
||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||
}
|
||
|
||
open IsLattice isLattice using (_≼_) public
|
||
|
||
lattice : Lattice Map
|
||
lattice = record
|
||
{ _≈_ = _≈_
|
||
; _⊔_ = _⊔_
|
||
; _⊓_ = _⊓_
|
||
; isLattice = isLattice
|
||
}
|
||
|
||
⊔-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊔ m₂)
|
||
⊔-equal-keys km₁≡km₂ = union-equal-keys km₁≡km₂
|
||
|
||
⊓-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊓ m₂)
|
||
⊓-equal-keys km₁≡km₂ = intersect-equal-keys km₁≡km₂
|
||
|
||
private module _ where
|
||
open MemProp using (_∈_)
|
||
|
||
transform : List (A × B) → List A → (A → B) → List (A × B)
|
||
transform [] _ _ = []
|
||
transform ((k , v) ∷ xs) ks f
|
||
with k∈-dec k ks
|
||
... | yes _ = (k , f k) ∷ transform xs ks f
|
||
... | no _ = (k , v) ∷ transform xs ks f
|
||
|
||
transform-keys-≡ : ∀ (l : List (A × B)) (ks : List A) (f : A → B) →
|
||
ImplKeys.keys l ≡ ImplKeys.keys (transform l ks f)
|
||
transform-keys-≡ [] ks f = refl
|
||
transform-keys-≡ ((k , v) ∷ xs) ks f
|
||
with k∈-dec k ks
|
||
... | yes _ rewrite transform-keys-≡ xs ks f = refl
|
||
... | no _ rewrite transform-keys-≡ xs ks f = refl
|
||
|
||
transform-∉k-forward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} →
|
||
¬ k ∈ˡ ImplKeys.keys l → ¬ k ∈ˡ ImplKeys.keys (transform l ks f)
|
||
transform-∉k-forward {l} ks f k∉kl rewrite transform-keys-≡ l ks f = k∉kl
|
||
|
||
transform-∈k-forward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} →
|
||
k ∈ˡ ImplKeys.keys l → k ∈ˡ ImplKeys.keys (transform l ks f)
|
||
transform-∈k-forward {l} ks f k∈kl rewrite transform-keys-≡ l ks f = k∈kl
|
||
|
||
transform-∈k-backward : ∀ {l : List (A × B)} (ks : List A) (f : A → B) {k : A} →
|
||
k ∈ˡ ImplKeys.keys (transform l ks f) → k ∈ˡ ImplKeys.keys l
|
||
transform-∈k-backward {l} ks f k∈kt rewrite transform-keys-≡ l ks f = k∈kt
|
||
|
||
transform-k∈ks : ∀ (l : List (A × B)) {ks : List A} (f : A → B) {k : A} →
|
||
k ∈ˡ ks → k ∈ˡ ImplKeys.keys (transform l ks f) → (k , f k) ∈ˡ transform l ks f
|
||
transform-k∈ks [] _ _ ()
|
||
transform-k∈ks ((k' , v) ∷ xs) {ks} f {k} k∈ks k∈kl
|
||
with k∈-dec k' ks | k∈kl
|
||
... | yes _ | here refl = here refl
|
||
... | no k∉ks | here refl = ⊥-elim (k∉ks k∈ks)
|
||
... | yes _ | there k∈kxs = there (transform-k∈ks xs f k∈ks k∈kxs)
|
||
... | no _ | there k∈kxs = there (transform-k∈ks xs f k∈ks k∈kxs)
|
||
|
||
transform-k∉ks-forward : ∀ {l : List (A × B)} {ks : List A} (f : A → B) {k : A} {v : B} →
|
||
¬ k ∈ˡ ks → (k , v) ∈ˡ l → (k , v) ∈ˡ transform l ks f
|
||
transform-k∉ks-forward {[]} _ _ ()
|
||
transform-k∉ks-forward {(k' , v') ∷ xs} {ks} f {k} {v} k∉ks k,v∈l
|
||
with k∈-dec k' ks | k,v∈l
|
||
... | yes k∈ks | here refl = ⊥-elim (k∉ks k∈ks)
|
||
... | no k∉ks | here refl = here refl
|
||
... | yes _ | there k,v∈xs = there (transform-k∉ks-forward f k∉ks k,v∈xs)
|
||
... | no _ | there k,v∈xs = there (transform-k∉ks-forward f k∉ks k,v∈xs)
|
||
|
||
transform-k∉ks-backward : ∀ {l : List (A × B)} {ks : List A} (f : A → B) {k : A} {v : B} →
|
||
¬ k ∈ˡ ks → (k , v) ∈ˡ transform l ks f → (k , v) ∈ˡ l
|
||
transform-k∉ks-backward {[]} _ _ ()
|
||
transform-k∉ks-backward {(k' , v') ∷ xs} {ks} f {k} {v} k∉ks k,v∈tl
|
||
with k∈-dec k' ks | k,v∈tl
|
||
... | yes k∈ks | here refl = ⊥-elim (k∉ks k∈ks)
|
||
... | no k∉ks | here refl = here refl
|
||
... | yes _ | there k,v∈txs = there (transform-k∉ks-backward f k∉ks k,v∈txs)
|
||
... | no _ | there k,v∈txs = there (transform-k∉ks-backward f k∉ks k,v∈txs)
|
||
|
||
_updating_via_ : Map → List A → (A → B) → Map
|
||
_updating_via_ (kvs , uks) ks f =
|
||
( transform kvs ks f
|
||
, subst Unique (transform-keys-≡ kvs ks f) uks
|
||
)
|
||
|
||
updating-via-keys-≡ : ∀ (m : Map) (ks : List A) (f : A → B) →
|
||
keys m ≡ keys (m updating ks via f)
|
||
updating-via-keys-≡ (l , _) = transform-keys-≡ l
|
||
|
||
updating-via-∉k-forward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} →
|
||
¬ k ∈k m → ¬ k ∈k (m updating ks via f)
|
||
updating-via-∉k-forward m = transform-∉k-forward
|
||
|
||
updating-via-∈k-forward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} →
|
||
k ∈k m → k ∈k (m updating ks via f)
|
||
updating-via-∈k-forward m = transform-∈k-forward
|
||
|
||
updating-via-∈k-backward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} →
|
||
k ∈k (m updating ks via f) → k ∈k m
|
||
updating-via-∈k-backward m = transform-∈k-backward
|
||
|
||
updating-via-k∈ks : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} →
|
||
k ∈ˡ ks → k ∈k (m updating ks via f) → (k , f k) ∈ (m updating ks via f)
|
||
updating-via-k∈ks m = transform-k∈ks (proj₁ m)
|
||
|
||
updating-via-k∈ks-forward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} →
|
||
k ∈ˡ ks → k ∈k m → (k , f k) ∈ (m updating ks via f)
|
||
updating-via-k∈ks-forward m {ks} f k∈ks k∈km rewrite transform-keys-≡ (proj₁ m) ks f = transform-k∈ks (proj₁ m) f k∈ks k∈km
|
||
|
||
updating-via-k∈ks-≡ : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} →
|
||
k ∈ˡ ks → (k , v) ∈ (m updating ks via f)→ v ≡ f k
|
||
updating-via-k∈ks-≡ m {ks} f k∈ks k,v∈um
|
||
with updating-via-k∈ks m f k∈ks (forget k,v∈um)
|
||
... | k,fk∈um = Map-functional {m = (m updating ks via f)} k,v∈um k,fk∈um
|
||
|
||
updating-via-k∉ks-forward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} →
|
||
¬ k ∈ˡ ks → (k , v) ∈ m → (k , v) ∈ (m updating ks via f)
|
||
updating-via-k∉ks-forward m = transform-k∉ks-forward
|
||
|
||
updating-via-k∉ks-backward : ∀ (m : Map) {ks : List A} (f : A → B) {k : A} {v : B} →
|
||
¬ k ∈ˡ ks → (k , v) ∈ (m updating ks via f) → (k , v) ∈ m
|
||
updating-via-k∉ks-backward m = transform-k∉ks-backward
|
||
|
||
module _ {l} {L : Set l}
|
||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where
|
||
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
|
||
|
||
module _ (f : L → Map) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f)
|
||
(g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic _≼ˡ_ _≼₂_ (g k))
|
||
(ks : List A) where
|
||
|
||
updater : L → A → B
|
||
updater l k = g k l
|
||
|
||
f' : L → Map
|
||
f' l = (f l) updating ks via (updater l)
|
||
|
||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = (f'l₁f'l₂⊆f'l₂ , f'l₂⊆f'l₁f'l₂)
|
||
where
|
||
fl₁fl₂⊆fl₂ = proj₁ (f-Monotonic l₁≼l₂)
|
||
fl₂⊆fl₁fl₂ = proj₂ (f-Monotonic l₁≼l₂)
|
||
|
||
f'l₁f'l₂⊆f'l₂ : ((f' l₁) ⊔ (f' l₂)) ⊆ f' l₂
|
||
f'l₁f'l₂⊆f'l₂ k v k,v∈f'l₁f'l₂
|
||
with Expr-Provenance-≡ ((` (f' l₁)) ∪ (` (f' l₂))) k,v∈f'l₁f'l₂
|
||
... | in₁ (single k,v∈f'l₁) k∉kf'l₂ =
|
||
let
|
||
k∈kfl₁ = updating-via-∈k-backward (f l₁) ks (updater l₁) (forget k,v∈f'l₁)
|
||
k∈kfl₁fl₂ = union-preserves-∈k₁ {l₁ = proj₁ (f l₁)} {l₂ = proj₁ (f l₂)} k∈kfl₁
|
||
(v' , k,v'∈fl₁l₂) = locate {m = (f l₁ ⊔ f l₂)} k∈kfl₁fl₂
|
||
(v'' , (v'≈v'' , k,v''∈fl₂)) = fl₁fl₂⊆fl₂ k v' k,v'∈fl₁l₂
|
||
k∈kf'l₂ = updating-via-∈k-forward (f l₂) ks (updater l₂) (forget k,v''∈fl₂)
|
||
in
|
||
⊥-elim (k∉kf'l₂ k∈kf'l₂)
|
||
... | in₂ k∉kf'l₁ (single k,v'∈f'l₂) =
|
||
(v , (IsLattice.≈-refl lB , k,v'∈f'l₂))
|
||
... | bothᵘ (single {v₁} k,v₁∈f'l₁) (single {v₂} k,v₂∈f'l₂)
|
||
with k∈-dec k ks
|
||
... | yes k∈ks
|
||
with refl ← updating-via-k∈ks-≡ (f l₁) (updater l₁) k∈ks k,v₁∈f'l₁
|
||
with refl ← updating-via-k∈ks-≡ (f l₂) (updater l₂) k∈ks k,v₂∈f'l₂ =
|
||
(updater l₂ k , (g-Monotonicʳ k l₁≼l₂ , k,v₂∈f'l₂))
|
||
... | no k∉ks =
|
||
let
|
||
k,v₁∈fl₁ = updating-via-k∉ks-backward (f l₁) (updater l₁) k∉ks k,v₁∈f'l₁
|
||
k,v₂∈fl₂ = updating-via-k∉ks-backward (f l₂) (updater l₂) k∉ks k,v₂∈f'l₂
|
||
k,v₁v₂∈fl₁fl₂ = ⊔-combines {m₁ = f l₁} {m₂ = f l₂} k,v₁∈fl₁ k,v₂∈fl₂
|
||
(v' , (v'≈v₁v₂ , k,v'∈fl₂)) = fl₁fl₂⊆fl₂ k _ k,v₁v₂∈fl₁fl₂
|
||
k,v'∈f'l₂ = updating-via-k∉ks-forward (f l₂) (updater l₂) k∉ks k,v'∈fl₂
|
||
in
|
||
(v' , (v'≈v₁v₂ , k,v'∈f'l₂))
|
||
|
||
f'l₂⊆f'l₁f'l₂ : f' l₂ ⊆ ((f' l₁) ⊔ (f' l₂))
|
||
f'l₂⊆f'l₁f'l₂ k v k,v∈f'l₂
|
||
with k∈kfl₂ ← updating-via-∈k-backward (f l₂) ks (updater l₂) (forget k,v∈f'l₂)
|
||
with (v' , k,v'∈fl₂) ← locate {m = f l₂} k∈kfl₂
|
||
with (v'' , (v'≈v'' , k,v''∈fl₁fl₂)) ← fl₂⊆fl₁fl₂ k v' k,v'∈fl₂
|
||
with Expr-Provenance-≡ ((` (f l₁)) ∪ (` (f l₂))) k,v''∈fl₁fl₂
|
||
... | in₁ (single k,v''∈fl₁) k∉kfl₂ = ⊥-elim (k∉kfl₂ k∈kfl₂)
|
||
... | in₂ k∉kfl₁ (single k,v''∈fl₂) =
|
||
let
|
||
k∉kf'l₁ = updating-via-∉k-forward (f l₁) ks (updater l₁) k∉kfl₁
|
||
in
|
||
(v , (IsLattice.≈-refl lB , union-preserves-∈₂ k∉kf'l₁ k,v∈f'l₂))
|
||
... | bothᵘ (single {v₁} k,v₁∈fl₁) (single {v₂} k,v₂∈fl₂)
|
||
with k∈-dec k ks
|
||
... | yes k∈ks with refl ← updating-via-k∈ks-≡ (f l₂) (updater l₂) k∈ks k,v∈f'l₂ =
|
||
let
|
||
k,uv₁∈f'l₁ = updating-via-k∈ks-forward (f l₁) (updater l₁) k∈ks (forget k,v₁∈fl₁)
|
||
k,uv₂∈f'l₂ = updating-via-k∈ks-forward (f l₂) (updater l₂) k∈ks (forget k,v₂∈fl₂)
|
||
k,uv₁uv₂∈f'l₁f'l₂ = ⊔-combines {m₁ = f' l₁} {m₂ = f' l₂} k,uv₁∈f'l₁ k,uv₂∈f'l₂
|
||
in
|
||
(updater l₁ k ⊔₂ updater l₂ k , (IsLattice.≈-sym lB (g-Monotonicʳ k l₁≼l₂) , k,uv₁uv₂∈f'l₁f'l₂))
|
||
... | no k∉ks
|
||
with k,v₁∈f'l₁ ← updating-via-k∉ks-forward (f l₁) (updater l₁) k∉ks k,v₁∈fl₁
|
||
with k,v₂∈f'l₂ ← updating-via-k∉ks-forward (f l₂) (updater l₂) k∉ks k,v₂∈fl₂
|
||
with k,v₁v₂∈f'l₁f'l₂ ← ⊔-combines {m₁ = f' l₁} {m₂ = f' l₂} k,v₁∈f'l₁ k,v₂∈f'l₂
|
||
with refl ← Map-functional {m = f' l₂} k,v∈f'l₂ k,v₂∈f'l₂
|
||
with refl ← Map-functional {m = f l₂} k,v'∈fl₂ k,v₂∈fl₂ =
|
||
(v₁ ⊔₂ v , (v'≈v'' , k,v₁v₂∈f'l₁f'l₂))
|
||
|
||
|
||
_[_] : Map → List A → List B
|
||
_[_] m [] = []
|
||
_[_] m (k ∷ ks)
|
||
with ∈k-dec k (proj₁ m)
|
||
... | yes k∈km = proj₁ (locate {m = m} k∈km) ∷ (m [ ks ])
|
||
... | no _ = m [ ks ]
|
||
|
||
m₁≼m₂⇒m₁[k]≼m₂[k] : ∀ (m₁ m₂ : Map) {k : A} {v₁ v₂ : B} →
|
||
m₁ ≼ m₂ → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → v₁ ≼₂ v₂
|
||
m₁≼m₂⇒m₁[k]≼m₂[k] m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
|
||
with k,v₁v₂∈m₁m₂ ← ⊔-combines {m₁ = m₁} {m₂ = m₂} k,v₁∈m₁ k,v₂∈m₂
|
||
with (v' , (v₁v₂≈v' , k,v'∈m₂)) ← (proj₁ m₁≼m₂) _ _ k,v₁v₂∈m₁m₂
|
||
with refl ← Map-functional {m = m₂} k,v₂∈m₂ k,v'∈m₂
|
||
= v₁v₂≈v'
|
||
|
||
m₁≼m₂⇒k∈km₁⇒k∈km₂ : ∀ (m₁ m₂ : Map) {k : A} →
|
||
m₁ ≼ m₂ → k ∈k m₁ → k ∈k m₂
|
||
m₁≼m₂⇒k∈km₁⇒k∈km₂ m₁ m₂ m₁≼m₂ k∈km₁ =
|
||
let
|
||
k∈km₁m₂ = union-preserves-∈k₁ {l₁ = proj₁ m₁} {l₂ = proj₁ m₂} k∈km₁
|
||
(v , k,v∈m₁m₂) = locate {m = m₁ ⊔ m₂} k∈km₁m₂
|
||
(v' , (v≈v' , k,v'∈m₂)) = (proj₁ m₁≼m₂) _ _ k,v∈m₁m₂
|
||
in
|
||
forget k,v'∈m₂
|