41 lines
2.1 KiB
Agda
41 lines
2.1 KiB
Agda
open import Equivalence
|
||
|
||
module Chain {a} {A : Set a}
|
||
(_≈_ : A → A → Set a)
|
||
(≈-equiv : IsEquivalence A _≈_)
|
||
(_R_ : A → A → Set a)
|
||
(R-≈-cong : ∀ {a₁ a₁' a₂ a₂'} → a₁ ≈ a₁' → a₂ ≈ a₂' → a₁ R a₂ → a₁' R a₂') where
|
||
|
||
open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_)
|
||
open import Data.Product using (_×_; Σ; _,_)
|
||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||
|
||
open IsEquivalence ≈-equiv
|
||
|
||
module _ where
|
||
|
||
data Chain : A → A → ℕ → Set a where
|
||
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
|
||
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
|
||
|
||
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : ℕ} → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
|
||
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
|
||
Chain-≈-cong₁ a₁≈a₁' (step a₁Ra a≈a' a'a₂) = step (R-≈-cong a₁≈a₁' ≈-refl a₁Ra) a≈a' a'a₂
|
||
|
||
Chain-≈-cong₂ : ∀ {a₁ a₂ a₂'} {n : ℕ} → a₂ ≈ a₂' → Chain a₁ a₂ n → Chain a₁ a₂' n
|
||
Chain-≈-cong₂ a₂≈a₂' (done a₁≈a₂) = done (≈-trans a₁≈a₂ a₂≈a₂')
|
||
Chain-≈-cong₂ a₂≈a₂' (step a₁Ra a≈a' a'a₂) = step a₁Ra a≈a' (Chain-≈-cong₂ a₂≈a₂' a'a₂)
|
||
|
||
concat : ∀ {a₁ a₂ a₃ : A} {n₁ n₂ : ℕ} → Chain a₁ a₂ n₁ → Chain a₂ a₃ n₂ → Chain a₁ a₃ (n₁ + n₂)
|
||
concat (done a₁≈a₂) a₂a₃ = Chain-≈-cong₁ (≈-sym a₁≈a₂) a₂a₃
|
||
concat (step a₁Ra a≈a' a'a₂) a₂a₃ = step a₁Ra a≈a' (concat a'a₂ a₂a₃)
|
||
|
||
empty-≡ : ∀ {a₁ a₂ : A} → Chain a₁ a₂ 0 → a₁ ≈ a₂
|
||
empty-≡ (done a₁≈a₂) = a₁≈a₂
|
||
|
||
Bounded : ℕ → Set a
|
||
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
||
|
||
Height : ℕ → Set a
|
||
Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)
|