120 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \documentclass{article}
 | |
| \usepackage[margin=1in]{geometry}
 | |
| \usepackage{graphicx}
 | |
| \usepackage{amsmath}
 | |
| \title{Homework 3}
 | |
| \begin{document}
 | |
| \maketitle
 | |
| \section*{Q1}
 | |
| Given the logical formula, we can follow
 | |
| the following process to convert it into strictly
 | |
| inverters, NOR, and NAND gates:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|     & \lnot((AB+C)D+E) \\
 | |
|       \Leftrightarrow & \lnot(\lnot\lnot(AB+C)D+E) & \text{(negation involutive)} \\
 | |
|       \Leftrightarrow & \lnot(\lnot(\lnot(AB+C)+\lnot D)+E) & \text{(DeMorgan's Laws)} \\
 | |
|       \Leftrightarrow & \lnot(\lnot(\lnot(\lnot\lnot AB+C)+\lnot D)+E) & \text{(negation involutive)} \\
 | |
|       \Leftrightarrow & \lnot(\lnot(\lnot(\lnot(\lnot A + \lnot B)+C)+\lnot D)+E) & \text{(DeMorgan's Laws)} \\
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| This corresponds to the following circuit:
 | |
| 
 | |
| \begin{figure}[h]
 | |
|     \centering
 | |
|     \includegraphics[width=0.7\linewidth]{Q1HW3.png}
 | |
| \end{figure}
 | |
| 
 | |
| \pagebreak
 | |
| \section*{Q2}
 | |
| Making Scott's adjustment (adding a top-level 'not' to the formula in the assignment) yields the following:
 | |
| 
 | |
| \begin{figure}[h]
 | |
|     \centering
 | |
|     \includegraphics[width=0.7\linewidth]{Q2.png}
 | |
| \end{figure}
 | |
| 
 | |
| \pagebreak
 | |
| \section*{Q3}
 | |
| The book gives the following equation for determing the ideal number of stages:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|       N &= \log_{\rho}F \\
 | |
|       0 &= p_\text{inv} + \rho(1-\ln\rho)
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| Where $p_\text{inv}$ is the intrinsic delay of an inverter.
 | |
| For $p_\text{inv} = 5$, we have $\rho = 6.14$. We then compute $F$:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|       & F &= GBH \\
 | |
|       & G &= 1 \\
 | |
|       & B &= 1 \\
 | |
|       & H &= 1000 \\
 | |
|     \Rightarrow & F &= 1000
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| The ideal number of stages is then:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \log_\rho F = 3.8 \approx 4
 | |
| \end{equation*}
 | |
| 
 | |
| For all inverters, then, we get the following:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|       \hat{f} &= \sqrt[4]{1000} \\
 | |
|       \text{sz}_4 &= 1000/\hat{f}^1 = 178 \\
 | |
|       \text{sz}_3 &= 1000/\hat{f}^2 = 31.6 \\
 | |
|       \text{sz}_2 &= 1000/\hat{f}^3 = 5.62 \\
 | |
|       \text{sz}_1 &= 1000/\hat{f}^4 = 1 \\
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| \pagebreak
 | |
| \section*{Q4}
 | |
| First, to compute total effort $F$.
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|       & F &= GBH \\
 | |
|       & G &= \left(\frac{4}{3}\right)\left(\frac{5}{3}\right)\left(\frac{5}{3}\right) \\
 | |
|       & B &= 3 \\
 | |
|       & H &= 1000 \\
 | |
|     \Rightarrow & F &= 11111
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| Since we are using the same inverter as the one in Q3, we are
 | |
| once again using $p_\text{inv}=5$, and thus, have that $\rho=6.138$.
 | |
| From this, we can determine the ideal number of stages:
 | |
| 
 | |
| \begin{equation*}
 | |
|   \log_\rho F = 5.13 \approx 5
 | |
| \end{equation*}
 | |
| 
 | |
| Since we currently have 3 stages, we should insert 2 inverters.
 | |
| I will insert these at the end of the path in question. From
 | |
| there, we once again compute stage effort $\hat{f}$, and work
 | |
| backwards to determine the optimal sizes for all of the stages.
 | |
| 
 | |
| \begin{equation*}
 | |
|   \begin{aligned}
 | |
|       \hat{f} &= \sqrt[5]{11111} \\
 | |
|       \text{sz}_\text{inv1} &= 1000/\hat{f}^1 = 155 \\
 | |
|       \text{sz}_\text{inv2} &= 1000/\hat{f}^2 = 24.1 \\
 | |
|       \text{sz}_\text{nand3} &= 1000/\hat{f}^3 * \left(\frac{5}{3}\right) = 6.23 \\
 | |
|       \text{sz}_\text{nor2} &= 1000/\hat{f}^4 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right) = 1.61 \\
 | |
|       \text{sz}_\text{nand2} &= 1000/\hat{f}^5 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right)\left(\frac{4}{3}\right)3 = 1
 | |
|   \end{aligned}
 | |
| \end{equation*}
 | |
| 
 | |
| \end{document}
 |