bergamot/src/Language/Bergamot/Syntax.purs

144 lines
5.7 KiB
Plaintext

module Language.Bergamot.Syntax where
import Prelude (Unit, ($), (<<<), unit, (/=), const, flip, (+))
import Control.Plus (class Plus, empty)
import Control.Monad (class Monad)
import Control.Monad.State.Trans (StateT, runStateT)
import Control.Monad.State.Class (class MonadState, gets, modify)
import Control.Apply (class Apply, apply, lift2)
import Control.Alt (class Alt, alt)
import Control.Alternative (class Alternative)
import Control.Applicative (class Applicative, pure, (*>))
import Control.Bind (class Bind, bind, join, (>>=))
import Control.MonadPlus (class MonadPlus)
import Control.Monad.Reader.Class (class MonadReader, class MonadAsk, local, ask)
import Control.Monad.Logic.Class (class MonadLogic, msplit, interleave)
import Control.Monad.Unify.Class (class MonadUnify, class Unifiable, class UnificationVariable, Stream(..), squash, alongside, ComparisonAction(..), fresh, unify, reify)
import Control.Monad.Reader.Trans (ReaderT, runReaderT)
import Control.Monad.Unify.Trans (UnifyT(..), runUnifyT)
import Control.Monad.Logic.Trans (SFKT(..), runSFKTOnce)
import Control.Monad.State.Trans (StateT(..), runStateT)
import Data.List (List(..), (:), fromFoldable)
import Data.Functor (class Functor, (<$>), map)
import Data.Eq (class Eq)
import Data.Ord (class Ord)
import Data.Traversable (class Traversable, sequence, traverse, oneOf)
import Data.Foldable (class Foldable, foldr, foldl, foldMap, any, intercalate)
import Data.Monoid ((<>), mempty)
import Data.Map (Map, lookup, insert)
import Data.Map as Map
import Data.Set (Set, singleton, union)
import Data.Tuple (Tuple(..), fst)
import Data.Tuple.Nested ((/\))
import Data.Lazy (Lazy, defer, force)
import Data.Newtype (class Newtype, un, over2)
import Data.Maybe (Maybe(..), fromMaybe, isJust)
import Data.Bifunctor (rmap)
data Expr v
= Var v
| Atom String (List (Expr v))
derive instance Eq v => Eq (Expr v)
derive instance Functor Expr
derive instance Foldable Expr
derive instance Traversable Expr
newtype IntVar = MkIntVar Int
derive instance Eq IntVar
derive instance Ord IntVar
instance UnificationVariable IntVar where
variables = mkVarList 0
where mkVarList n = StreamCons (MkIntVar n) $ defer $ \_ -> mkVarList (n+1)
instance UnificationVariable k => Unifiable k Expr where
variable = Var
squash (Var f) = f
squash (Atom name args) = Atom name $ squash <$> args
alongside (Var k1) (Var k2) = Var (Merge k1 k2)
alongside (Var k) f = Var (Store k f)
alongside f (Var k) = Var (Store k f)
alongside (Atom n1 _) (Atom n2 _) | n1 /= n2 = Var Fail
alongside (Atom n1 args1) (Atom _ args2) = Atom n1 $ combine args1 args2
where
combine Nil Nil = Nil
combine (_:_) Nil = (Var Fail) : Nil
combine Nil (_:_) = (Var Fail) : Nil
combine (x:xs) (y:ys) = alongside x y : combine xs ys
-- note: unification expression ef not the same as functor-to-instantiate f, this way we can instantiate
-- things that contain expression etc.
instantiate :: forall k f ef m. Traversable f => MonadUnify k ef m => f Metavariable -> m (f k)
instantiate f = map fst $ runStateT (traverse metavariable f) Map.empty
newtype Rule k = MkRule { name :: String, head :: Expr k, tail :: List (Expr k) }
derive instance Newtype (Rule k) _
derive instance Functor Rule
derive instance Foldable Rule
derive instance Traversable Rule
newtype Unifier a = MkUnifier (UnifyT IntVar Expr (ReaderT (Array (Rule Metavariable)) (SFKT List)) a)
derive instance Newtype (Unifier a) _
derive newtype instance Functor Unifier
derive newtype instance Apply Unifier
derive newtype instance Applicative Unifier
derive newtype instance Alt Unifier
derive newtype instance Plus Unifier
derive newtype instance Alternative Unifier
derive newtype instance Bind Unifier
derive newtype instance Monad Unifier
derive newtype instance MonadPlus Unifier
derive newtype instance MonadUnify IntVar Expr Unifier
-- >:(
instance MonadAsk (Array (Rule Metavariable)) Unifier where
ask = MkUnifier $ MkUnifyT ask
-- >:(
instance MonadReader (Array (Rule Metavariable)) Unifier where
local f m = MkUnifier $ MkUnifyT $ StateT $ \s -> local f (runStateT (un MkUnifyT $ un MkUnifier m) s)
-- >:(
instance MonadLogic Unifier where
msplit m = MkUnifier $ MkUnifyT $ map (map (rmap (MkUnifier <<< MkUnifyT))) $ msplit $ un MkUnifyT $ un MkUnifier m
interleave = over2 MkUnifier (over2 MkUnifyT interleave)
type Metavariable = String
type Metavariables k = Map Metavariable k
metavariable :: forall k f m. MonadState (Metavariables k) m => MonadUnify k f m => Metavariable -> m k
metavariable s = do
r <- gets (lookup s)
case r of
Just v -> pure v
Nothing -> do
v <- fresh
modify (insert s v) *> pure v
newtype ProofTree k = MkProofTree { claim :: Expr k, rule :: Rule Metavariable, witnesses :: List (ProofTree k) }
match :: Array (Rule Metavariable) -> Expr IntVar -> Unifier (ProofTree IntVar)
match rs e = oneOf $ map (matchSingle e) rs
where
matchSingle e' rule = do
MkRule {head, tail} <- instantiate rule
_ <- unify e' head
witnesses <- traverse (match rs) tail
pure $ MkProofTree { claim: e, rule: rule, witnesses: witnesses }
reifyProofTree :: ProofTree IntVar -> Unifier (ProofTree IntVar)
reifyProofTree (MkProofTree {claim, rule, witnesses}) = do
claim' <- reify claim
witnesses' <- traverse reifyProofTree witnesses
pure $ MkProofTree $ { claim: claim', rule: rule, witnesses: witnesses' }
query :: Expr Metavariable -> Unifier (ProofTree IntVar)
query e = (join $ lift2 match ask (instantiate e)) >>= reifyProofTree
runUnifier :: forall a. Array (Rule Metavariable) -> Unifier a -> List a
runUnifier rs m = runSFKTOnce (fst <$> (runReaderT (runUnifyT $ un MkUnifier m) rs))