Rewrite using induction on list length.
This commit is contained in:
parent
661bcbb557
commit
2b69cbd391
77
day8.v
77
day8.v
|
@ -202,35 +202,54 @@ Module DayEight (Import M:Int).
|
|||
left. split; auto. apply stuck_prog; auto.
|
||||
Qed.
|
||||
|
||||
(* A valid input always terminates, either by getting to the end of the program,
|
||||
or by looping and thus getting stuck. *)
|
||||
Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v)
|
||||
{ measure (length v) }:
|
||||
(exists pc', run_noswap inp (pc, v, acc) pc') :=
|
||||
match valid_input_progress pc v acc with
|
||||
| or_introl (conj Heq Hdone) => _
|
||||
| or_intror (ex_intro _ pcs (conj Hw w)) =>
|
||||
match w with
|
||||
| or_introl (conj Hnin Hstuck) => _
|
||||
| or_intror (ex_intro _ pc' (ex_intro _ acc' (conj Hin Hst))) =>
|
||||
match valid_input_terminates pc' (set_remove Fin.eq_dec pcs v) acc' (set_remove_nodup Fin.eq_dec pcs Hnd) with
|
||||
| ex_intro _ pc'' Hrun => _
|
||||
end
|
||||
end
|
||||
end.
|
||||
Obligation 1. eexists. apply run_noswap_ok. assumption. Qed.
|
||||
Obligation 2. eexists. apply run_noswap_fail. assumption. Qed.
|
||||
Obligation 3.
|
||||
clear Heq_anonymous. clear valid_input_terminates. clear Hst.
|
||||
induction v.
|
||||
- inversion Hin.
|
||||
- destruct (Fin.eq_dec pcs a) eqn:Heq_dec.
|
||||
+ simpl. rewrite Heq_dec. lia.
|
||||
+ inversion Hnd; subst.
|
||||
inversion Hin. subst. exfalso. apply n0. auto.
|
||||
specialize (IHv H2 H).
|
||||
simpl. rewrite Heq_dec. simpl. lia.
|
||||
Theorem list_length_induction {X : Type} (P : list X -> Prop) :
|
||||
(forall l, (forall l', length l' < length l -> P l') -> P l) ->
|
||||
forall l, P l.
|
||||
Proof.
|
||||
intros Hrec.
|
||||
assert (forall (l l' : list X), length l' <= length l -> P l').
|
||||
{ induction l; intros l' Hlen; apply Hrec; intros l'0 Hlen0.
|
||||
- simpl in Hlen. lia.
|
||||
- apply IHl. simpl in Hlen. lia. }
|
||||
intros l. apply H with l. lia.
|
||||
Qed.
|
||||
|
||||
Theorem set_remove_length : forall (f : fin n) (s : set (fin n)),
|
||||
set_In f s ->
|
||||
length (set_remove Fin.eq_dec f s) < length s.
|
||||
Proof.
|
||||
intros f s Hin.
|
||||
induction s.
|
||||
- inversion Hin.
|
||||
- simpl. destruct (Fin.eq_dec f a) eqn:Heq.
|
||||
+ unfold lt. apply le_n. (* Why couldn't lia get this one? *)
|
||||
+ inversion Hin; subst. exfalso. apply n0. auto.
|
||||
apply IHs in H. simpl. lia.
|
||||
Qed.
|
||||
|
||||
Theorem valid_input_terminates : forall (pc : fin (S n)) (v : set (fin n)) (acc : t),
|
||||
(exists pc', run_noswap inp (pc, v, acc) pc').
|
||||
Proof.
|
||||
intros pc v. generalize dependent pc.
|
||||
induction v using list_length_induction.
|
||||
intros pc acc.
|
||||
destruct (valid_input_progress pc l acc) as [[_ Hd]|[pc' [Hw [[_ Hst]|[pc'' [acc'' [Hin Hst]]]]]]].
|
||||
- (* We're done. *)
|
||||
eexists. apply run_noswap_ok. apply Hd.
|
||||
- (* We're stuck. *)
|
||||
eexists. apply run_noswap_fail. apply Hst.
|
||||
- (* We can make a step. This will remove our current PC from the valid list, *)
|
||||
edestruct (H (set_remove Fin.eq_dec pc' l)).
|
||||
(* Since the PC must be in the list, removing it makes the list smaller. *)
|
||||
apply (set_remove_length _ _ Hin).
|
||||
(* Without the current PC, our valid set shrinks.
|
||||
Since this is the inductive step, we have assumed
|
||||
that programs with smaller sets of valid PCs always
|
||||
terminate. Thus, after we make the step, we're done. *)
|
||||
exists x. subst. eapply run_noswap_trans.
|
||||
+ auto.
|
||||
+ apply Hst.
|
||||
+ apply H0.
|
||||
Qed.
|
||||
Obligation 4. eexists. eapply run_noswap_trans; auto. apply Hst. apply Hrun. Qed.
|
||||
End ValidInput.
|
||||
End DayEight.
|
||||
|
|
Loading…
Reference in New Issue
Block a user