Compare commits

...

3 Commits

Author SHA1 Message Date
Danila Fedorin 8ea03a4c51 Finish first proof for day 8.
Apparently writing proof objects by hand is
easier than using tactics.
2020-12-12 22:49:52 -08:00
Danila Fedorin 7757fd2b49 Add day 13 solution. 2020-12-12 22:09:28 -08:00
Danila Fedorin f0fbba722c Flail around with this goddamn proof some more. 2020-12-12 20:08:21 -08:00
2 changed files with 148 additions and 288 deletions

34
day13.cr Normal file
View File

@ -0,0 +1,34 @@
require "advent"
INPU = input(2020, 13).lines
INPUT = {INPU[0].to_i32, INPU[1].split(",")}
def part1(input)
early, busses = input
busses.reject! &.==("x")
busses = busses.map &.to_i32
bbus = busses.min_by do |b|
(early / b).ceil * b
end
diff = bbus * (((early/bbus).ceil * bbus).to_i32 - early)
end
def part2(input)
_, busses = input
busses = busses.map_with_index do |x, i|
x.to_i32?.try { |n| { n, i } }
end
busses = busses.compact
n = 0_i64
iter = 1_i64
busses.each do |m, i|
while (n + i) % m != 0
n += iter
end
iter *= m
end
puts n
puts busses
end
puts part1(INPUT.clone)
puts part2(INPUT.clone)

402
day8.v
View File

@ -5,6 +5,8 @@ Require Import Coq.Vectors.Fin.
Require Import Coq.Program.Equality.
Require Import Coq.Logic.Eqdep_dec.
Require Import Coq.Arith.Peano_dec.
Require Import Coq.Program.Wf.
Require Import Lia.
Module DayEight (Import M:Int).
(* We need to coerce natural numbers into integers to add them. *)
@ -51,50 +53,12 @@ Module DayEight (Import M:Int).
| FS f' => FS (weaken_one f')
end.
(* One modification: we really want to use 'allowed' addresses,
a set that shrinks as the program continues, rather than 'visited'
addresses, a set that increases as the program continues. *)
Inductive step_noswap {n} : input n -> state n -> state n -> Prop :=
| step_noswap_add : forall inp pc' v acc t,
nth inp pc' = (add, t) ->
set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, M.add acc t)
| step_noswap_nop : forall inp pc' v acc t,
nth inp pc' = (nop, t) ->
set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, acc)
| step_noswap_jmp : forall inp pc' pc'' v acc t,
nth inp pc' = (jmp, t) ->
set_mem Fin.eq_dec pc' v = true ->
valid_jump_t pc' t = Some pc'' ->
step_noswap inp (weaken_one pc', v, acc) (pc'', set_remove Fin.eq_dec pc' v, acc).
Fixpoint nat_to_fin (n : nat) : fin (S n) :=
match n with
| O => F1
| S n' => FS (nat_to_fin n')
end.
Inductive run_noswap {n} : input n -> state n -> state n -> Prop :=
| run_noswap_ok : forall inp v acc,
run_noswap inp (nat_to_fin n, v, acc) (nat_to_fin n, v, acc)
| run_noswap_fail : forall inp pc' v acc,
set_mem Fin.eq_dec pc' v = false ->
run_noswap inp (weaken_one pc', v, acc) (weaken_one pc', v, acc)
| run_noswap_trans : forall inp st st' st'',
step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''.
Inductive valid_inst {n} : inst -> fin n -> Prop :=
| valid_inst_add : forall t f, valid_inst (add, t) f
| valid_inst_nop : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (nop, t) f
| valid_inst_jmp : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (jmp, t) f.
(* An input is valid if all its instructions are valid. *)
Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n),
valid_inst (nth inp pc) pc.
Lemma fin_big_or_small : forall {n} (f : fin (S n)),
(f = nat_to_fin n) \/ (exists (f' : fin n), f = weaken_one f').
Proof.
@ -114,61 +78,7 @@ Module DayEight (Import M:Int).
exists (FS f'). simpl. rewrite Heq.
reflexivity.
Qed.
Lemma set_add_idempotent : forall {A:Type}
(Aeq_dec : forall x y : A, { x = y } + { x <> y })
(a : A) (s : set A), set_mem Aeq_dec a s = true -> set_add Aeq_dec a s = s.
Proof.
intros A Aeq_dec a s Hin.
induction s.
- inversion Hin.
- simpl. simpl in Hin.
destruct (Aeq_dec a a0).
+ reflexivity.
+ simpl. rewrite IHs; auto.
Qed.
Theorem set_add_append : forall {A:Type}
(Aeq_dec : forall x y : A, {x = y } + { x <> y })
(a : A) (s : set A), set_mem Aeq_dec a s = false ->
set_add Aeq_dec a s = List.app s (List.cons a List.nil).
Proof.
induction s.
- reflexivity.
- intros Hnm. simpl in Hnm.
destruct (Aeq_dec a a0) eqn:Heq_dec.
+ inversion Hnm.
+ simpl. rewrite Heq_dec. rewrite IHs.
reflexivity. assumption.
Qed.
Lemma list_append_or_nil : forall {A:Type} (l : list A),
l = List.nil \/ exists l' a, l = List.app l' (List.cons a List.nil).
Proof.
induction l.
- left. reflexivity.
- right. destruct IHl.
+ exists List.nil. exists a.
rewrite H. reflexivity.
+ destruct H as [l' [a' H]].
exists (List.cons a l'). exists a'.
rewrite H. reflexivity.
Qed.
Theorem list_append_induction : forall {A:Type}
(P : list A -> Prop),
P List.nil -> (forall (a : A) (l : list A), P l -> P (List.app l (List.cons a (List.nil)))) ->
forall l, P l.
Proof. Admitted.
Theorem set_induction : forall {A:Type}
(Aeq_dec : forall x y : A, { x = y } + {x <> y })
(P : set A -> Prop),
P (@empty_set A) -> (forall (a : A) (s' : set A), P s' -> P (set_add Aeq_dec a s')) ->
forall (s : set A), P s.
Proof. Admitted.
Lemma weaken_one_inj : forall n (f1 f2 : fin n),
(weaken_one f1 = weaken_one f2 -> f1 = f2).
Proof.
@ -207,211 +117,127 @@ Module DayEight (Import M:Int).
+ apply eq_nat_dec.
Qed.
Lemma add_pc_safe_step : forall {n} (inp : input n) (pc : fin (S n)) i is acc st',
step_noswap inp (pc, is, acc) st' ->
exists st'', step_noswap inp (pc, (set_add Fin.eq_dec i is), acc) st''.
Proof.
intros n inp pc' i is acc st' Hstep.
inversion Hstep.
- eexists. apply step_noswap_add. apply H4.
apply set_mem_correct2. apply set_add_intro1.
apply set_mem_correct1 with Fin.eq_dec. assumption.
- eexists. eapply step_noswap_nop. apply H4.
apply set_mem_correct2. apply set_add_intro1.
apply set_mem_correct1 with Fin.eq_dec. assumption.
- eexists. eapply step_noswap_jmp. apply H3.
apply set_mem_correct2. apply set_add_intro1.
apply set_mem_correct1 with Fin.eq_dec. assumption.
apply H6.
Qed.
(* One modification: we really want to use 'allowed' addresses,
a set that shrinks as the program continues, rather than 'visited'
addresses, a set that increases as the program continues. *)
Inductive step_noswap {n} : input n -> state n -> state n -> Prop :=
| step_noswap_add : forall inp pc' v acc t,
nth inp pc' = (add, t) ->
set_In pc' v ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, M.add acc t)
| step_noswap_nop : forall inp pc' v acc t,
nth inp pc' = (nop, t) ->
set_In pc' v ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, acc)
| step_noswap_jmp : forall inp pc' pc'' v acc t,
nth inp pc' = (jmp, t) ->
set_In pc' v ->
valid_jump_t pc' t = Some pc'' ->
step_noswap inp (weaken_one pc', v, acc) (pc'', set_remove Fin.eq_dec pc' v, acc).
Lemma remove_pc_safe_run : forall {n} (inp : input n) i pc v acc st',
run_noswap inp (pc, set_add Fin.eq_dec i v, acc) st' ->
exists st'', run_noswap inp (pc, v, acc) st''.
Proof.
intros n inp i pc v acc st' Hr.
dependent induction Hr.
- eexists. eapply run_noswap_ok.
- eexists. eapply run_noswap_fail.
apply set_mem_complete1 in H.
apply set_mem_complete2.
intros Hin. apply H. apply set_add_intro. right. apply Hin.
- inversion H; subst; destruct (set_mem Fin.eq_dec pc' v) eqn:Hm.
Admitted.
Inductive done {n} : input n -> state n -> Prop :=
| done_prog : forall inp v acc, done inp (nat_to_fin n, v, acc).
Lemma add_pc_safe_run : forall {n} (inp : input n) i pc v acc st',
run_noswap inp (pc, v, acc) st' ->
exists st'', run_noswap inp (pc, (set_add Fin.eq_dec i v), acc) st''.
Proof.
intros n inp i pc v acc st' Hr.
destruct (set_mem Fin.eq_dec i v) eqn:Hm.
(* If i is already in the set, nothing changes. *)
rewrite set_add_idempotent.
exists st'. assumption. assumption.
(* Otherwise, the behavior might have changed.. *)
destruct (fin_big_or_small pc).
- (* If we're done, we're done no matter what. *)
eexists. rewrite H. eapply run_noswap_ok.
- (* The PC points somewhere inside. We tried (and maybe failed)
to execute and instruction. The challenging part
is that adding i may change the outcome from 'fail' to 'ok' *)
destruct H as [pc' Heq].
generalize dependent st'.
induction v using (@set_induction (fin n) Fin.eq_dec);
intros st' Hr.
+ (* Our set of valid states is nearly empty. One step,
and it runs dry. *)
simpl. destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
* (* The PC is the one allowed state. *)
remember (nth inp pc') as h. destruct h. destruct o.
{ (* Addition. *)
destruct (fin_big_or_small (FS pc')).
- (* The additional step puts as at the end. *)
eexists. eapply run_noswap_trans.
+ rewrite Heq. apply step_noswap_add.
symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity.
+ rewrite H. apply run_noswap_ok.
- (* The additional step puts us somewhere else. *)
destruct H as [f' H].
eexists. eapply run_noswap_trans.
+ rewrite Heq. apply step_noswap_add.
symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity.
+ rewrite H. apply run_noswap_fail.
simpl. rewrite Heq_dec. reflexivity. }
{ (* No-op *) admit. }
{ (* Jump*) admit. }
* (* The PC is not. We're done. *)
eexists. rewrite Heq. eapply run_noswap_fail.
simpl. rewrite Heq_dec. reflexivity.
+ destruct (set_mem Fin.eq_dec a v) eqn:Hm'.
* unfold fin. rewrite (set_add_idempotent Fin.eq_dec a).
Inductive stuck {n} : input n -> state n -> Prop :=
| stuck_prog : forall inp pc' v acc,
~ set_In pc' v -> stuck inp (weaken_one pc', v, acc).
{ apply step_noswap_nop.
- symmetry. apply Heqh.
- simpl. rewrite Heq_dec. reflexivity. }
Inductive run_noswap {n} : input n -> state n -> state n -> Prop :=
| run_noswap_ok : forall inp st, done inp st -> run_noswap inp st st
| run_noswap_fail : forall inp st, stuck inp st -> run_noswap inp st st
| run_noswap_trans : forall inp st st' st'',
step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''.
(*
dependent induction Hr; subst.
+ (* We can't be in the OK state, since we already covered
that earlier. *)
destruct n. inversion pc'.
apply weaken_neq_to_fin in Heq as [].
+ apply weaken_one_inj in Heq as Hs. subst.
destruct (Fin.eq_dec pc'0 i) eqn:Heq_dec.
* admit.
* eexists. eapply run_noswap_fail.
assert (~set_In pc'0 v).
{ apply (set_mem_complete1 Fin.eq_dec). assumption. }
assert (~set_In pc'0 (List.cons i List.nil)).
{ simpl. intros [Heq'|[]]. apply n0. auto. }
assert (~set_In pc'0 (set_union Fin.eq_dec v (List.cons i List.nil))).
{ intros Hin. apply set_union_iff in Hin as [Hf|Hf].
- apply H0. apply Hf.
- apply H1. apply Hf. }
simpl in H2. apply set_mem_complete2. assumption.
+ apply (add_pc_safe_step _ _ i) in H as [st''' Hr'].
eexists. eapply run_noswap_trans.
apply Hr'. destruct st' as [[pc'' v''] acc''].
specialize (IHHr i pc'' v'' acc'').*)
Inductive valid_inst {n} : inst -> fin n -> Prop :=
| valid_inst_add : forall t f, valid_inst (add, t) f
| valid_inst_nop : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (nop, t) f
| valid_inst_jmp : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (jmp, t) f.
(* An input is valid if all its instructions are valid. *)
Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n),
valid_inst (nth inp pc) pc.
(* intros n inp i pc v.
generalize dependent i.
generalize dependent pc.
induction v; intros pc i acc st Hr.
- inversion Hr; subst.
+ eexists. apply run_noswap_ok.
+ destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
* admit.
* eexists. apply run_noswap_fail.
simpl. rewrite Heq_dec. reflexivity.
+ inversion H; subst; simpl in H7; inversion H7.
- inversion Hr; subst.
+ eexists. apply run_noswap_ok.
+ destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
* admit.
* eexists. apply run_noswap_fail.
simpl. rewrite Heq_dec. simpl in H4.
apply H4.
+
destruct (nth inp pc') as [op t]. *)
Section ValidInput.
Variable n : nat.
Variable inp : input n.
Hypothesis Hv : valid_input inp.
Admitted.
Theorem valid_input_terminates : forall n (inp : input n) st,
valid_input inp -> exists st', run_noswap inp st st'.
Proof.
intros n inp st.
destruct st as [[pc is] acc].
generalize dependent inp.
generalize dependent pc.
generalize dependent acc.
induction is using (@set_induction (fin n) Fin.eq_dec); intros acc pc inp Hv;
(* The PC may point past the end of the
array, or it may not. *)
destruct (fin_big_or_small pc);
(* No matter what, if it's past the end
of the array, we're done, *)
try (eexists (pc, _, acc); rewrite H; apply run_noswap_ok).
- (* It's not past the end of the array,
and the 'allowed' list is empty.
Evaluation fails. *)
destruct H as [f' Heq].
exists (pc, Datatypes.nil, acc).
rewrite Heq. apply run_noswap_fail. reflexivity.
- (* We're not past the end of the array. However,
adding a new valid index still guarantees
evaluation terminates. *)
specialize (IHis acc pc inp Hv) as [st' Hr].
apply add_pc_safe_run with st'. assumption.
Qed.
Lemma step_if_possible : forall pcs v acc,
set_In pcs v ->
exists pc' acc', step_noswap inp (weaken_one pcs, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc').
Proof.
intros pcs v acc Hin.
remember (nth inp pcs) as instr. destruct instr as [op t]. destruct op.
+ exists (FS pcs). exists (M.add acc t). apply step_noswap_add; auto.
+ exists (FS pcs). exists acc. apply step_noswap_nop with t; auto.
+ unfold valid_input in Hv. specialize (Hv pcs).
rewrite <- Heqinstr in Hv. inversion Hv; subst.
exists f'. exists acc. apply step_noswap_jmp with t; auto.
Qed.
(*
(* It's not past the end of the array,
and we're in the inductive case on is. *)
destruct H as [pc' Heq].
destruct (Fin.eq_dec pc' a) eqn:Heq_dec.
+ (* This PC is allowed. *)
(* That must mean we have a non-empty list. *)
remember (nth inp pc') as h. destruct h as [op t].
(* Unfortunately, we can't do eexists at the top
level, since that will mean the final state
has to be the same for every op. *)
destruct op.
(* Addition. *)
{ destruct (IHis (M.add acc t) (FS pc') inp Hv) as [st' Htrans].
eexists. eapply run_noswap_trans.
rewrite Heq. apply step_noswap_add.
- symmetry. apply Heqh.
- simpl. rewrite Heq_dec. reflexivity.
- simpl. rewrite Heq_dec. apply Htrans. }
(* No-ops *)
{ destruct (IHis acc (FS pc') inp Hv) as [st' Htrans].
eexists. eapply run_noswap_trans.
rewrite Heq. apply step_noswap_nop with t.
- symmetry. apply Heqh.
- simpl. rewrite Heq_dec. reflexivity.
- simpl. rewrite Heq_dec. apply Htrans. }
(* Jump. *)
{ (* A little more interesting. We need to know that the jump is valid. *)
assert (Hv' : valid_inst (jmp, t) pc').
{ specialize (Hv pc'). rewrite <- Heqh in Hv. assumption. }
inversion Hv'.
(* Now, proceed as usual. *)
destruct (IHis acc f' inp Hv) as [st' Htrans].
eexists. eapply run_noswap_trans.
rewrite Heq. apply step_noswap_jmp with t.
- symmetry. apply Heqh.
- simpl. rewrite Heq_dec. reflexivity.
- apply H0.
- simpl. rewrite Heq_dec. apply Htrans. }
+ (* The top PC is not allowed. *)
specialize (IHis acc pc inp Hv) as [st' Hr].
apply add_pc_safe_run with st'. assumption. *)
Qed.
Theorem valid_input_progress : forall pc v acc,
(pc = nat_to_fin n /\ done inp (pc, v, acc)) \/
(exists pcs, pc = weaken_one pcs /\
((~ set_In pcs v /\ stuck inp (pc, v, acc)) \/
(exists pc' acc', set_In pcs v /\ step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc')))).
Proof.
intros pc v acc.
(* Have we reached the end? *)
destruct (fin_big_or_small pc).
(* We're at the end, so we're done. *)
left. rewrite H. split. reflexivity. apply done_prog.
(* We're not at the end. Is the PC valid? *)
right. destruct H as [pcs H]. exists pcs. rewrite H. split. reflexivity.
destruct (set_In_dec Fin.eq_dec pcs v).
- (* It is. *)
right.
destruct (step_if_possible pcs v acc) as [pc' [acc' Hstep]]; auto.
exists pc'. exists acc'. split; auto.
- (* It i not. *)
left. split; auto. apply stuck_prog; auto.
Qed.
Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v)
{ measure (length v) }:
(exists pc', run_noswap inp (pc, v, acc) pc') :=
match valid_input_progress pc v acc with
| or_introl (conj Heq Hdone) =>
inhabited_sig_to_exists
(inhabits
(@exist (state n)
(fun x => run_noswap inp (pc, v, acc) x) (pc, v, acc) (run_noswap_ok _ _ Hdone)))
| or_intror (ex_intro _ pcs (conj Hw w)) =>
match w with
| or_introl (conj Hnin Hstuck) =>
inhabited_sig_to_exists
(inhabits
(@exist (state n)
(fun x => run_noswap inp (pc, v, acc) x) (pc, v, acc) (run_noswap_fail _ _ Hstuck)))
| or_intror (ex_intro _ pc' (ex_intro _ acc' (conj Hin Hst))) =>
match valid_input_terminates pc' (set_remove Fin.eq_dec pcs v) acc' (set_remove_nodup Fin.eq_dec pcs Hnd) with
| ex_intro _ pc'' Hrun =>
inhabited_sig_to_exists
(inhabits
(@exist (state n)
(fun x => run_noswap inp (pc, v, acc) x) pc''
(run_noswap_trans _ _ (pc', set_remove Fin.eq_dec pcs v, acc') _ Hst Hrun)))
end
end
end.
Obligation 1.
clear Heq_anonymous. clear valid_input_terminates. clear Hst.
induction v.
- inversion Hin.
- destruct (Fin.eq_dec pcs a) eqn:Heq_dec.
+ simpl. rewrite Heq_dec. lia.
+ inversion Hnd; subst.
inversion Hin. subst. exfalso. apply n0. auto.
specialize (IHv H2 H).
simpl. rewrite Heq_dec. simpl. lia.
Qed.
(* Stoppped here. *)
Admitted.
Admitted. *)
End DayEight.