Compare commits

...

3 Commits

18 changed files with 1722 additions and 1444 deletions

View File

@ -2,9 +2,9 @@ require "./chalk/*"
require "option_parser"
module Chalk
config = Config.parse!
config = Ui::Config.parse!
exit unless config.validate!
compiler = Compiler.new config
compiler = Compiler::Compiler.new config
compiler.run
end

View File

@ -1,21 +1,37 @@
module Chalk
class BuiltinFunction
getter param_count : Int32
module Builtin
# A normal function (i.e., a "call" is generated for it)
# that is provided by chalk's standard library, and therefore
# has predefined output.
abstract class BuiltinFunction
# Gets the number of parameters this function has.
getter param_count : Int32
def initialize(@param_count)
# Creates a new function with *param_count* parameters.
def initialize(@param_count)
end
# Uses the given `Compiler::Emitter` to output code.
abstract def generate!(codegen)
end
def generate!(codegen)
end
end
# A function to which a call is not generated. This function
# is copied everywhere a call to it occurs. Besides this, the
# function also accepts trees rather than register numbers,
# and therefore can accept and manipulate trees.
abstract class InlineFunction
# Gets the number of parameters this function has.
getter param_count : Int32
class InlineFunction
getter param_count : Int32
# Creates a new function with *param_count* parameters.
def initialize(@param_count)
end
def initialize(@param_count)
end
def generate!(codegen, params, table, target, free)
# Generates code like `Compiler::CodeGenerator` would.
# The *codegen* parameter is used to emit instructions,
# the *params* are trees that are being passed as arguments.
# See `Compiler::CodeGenerator#generate!` for what the other parameters mean.
abstract def generate!(codegen, params, table, target, free)
end
end
end

View File

@ -2,141 +2,163 @@ require "./ir.cr"
require "./emitter.cr"
module Chalk
class CodeGenerator
include Emitter
module Compiler
# A class that converts a tree into the corresponding
# intermediate representation, without optimizing.
class CodeGenerator
include Emitter
RETURN_REG = 14
STACK_REG = 13
# The register into which the return value of a function is stored.
RETURN_REG = 14
# The register into which the "stack pointer" is stored.
STACK_REG = 13
property instructions : Array(Instruction)
# Gets the instructions currently emitted by this code generator.
getter instructions
def initialize(table, @function : TreeFunction)
@registers = 0
@instructions = [] of Instruction
@table = Table.new table
# Creates a new compiler with the given symbol *table*
# and *function* for which code should be generated.
def initialize(table, @function : Trees::TreeFunction)
@registers = 0
@instructions = [] of Ir::Instruction
@table = Table.new table
@function.params.each do |param|
@table[param] = VarEntry.new @registers
@registers += 1
end
end
def generate!(tree, function : InlineFunction, table, target, free)
function.generate!(self, tree.params, table, target, free)
end
def generate!(tree, function : TreeFunction | BuiltinFunction, table, target, free)
start_at = free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Store variables
store (start_at - 1) unless start_at == 0
# Increment I and stack position
load free, start_at
opr TokenType::OpAdd, STACK_REG, free
addi free
# Calculate the parameters
tree.params.each do |param|
generate! param, table, free, free + 1
free += 1
end
# Call the function
tree.params.size.times do |time|
loadr time, time + start_at
end
call tree.name
# Reduce stack pointer
load free, start_at
opr TokenType::OpSub, STACK_REG, free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Restore
restore (start_at - 1) unless start_at == 0
# Get call value into target
loadr target, RETURN_REG
end
def generate!(tree, table, target, free)
case tree
when TreeId
entry = table[tree.id]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
loadr target, entry.register
when TreeLit
load target, tree.lit
when TreeOp
generate! tree.left, table, target, free
generate! tree.right, table, free, free + 1
opr tree.op, target, free
when TreeCall
entry = table[tree.name]?
raise "Unknown function" unless entry &&
entry.is_a?(FunctionEntry)
function = entry.function
raise "Invalid call" if tree.params.size != function.param_count
generate! tree, function, table, target, free
when TreeBlock
table = Table.new(table)
tree.children.each do |child|
free += generate! child, table, free, free + 1
@function.params.each do |param|
@table[param] = VarEntry.new @registers
@registers += 1
end
when TreeVar
entry = table[tree.name]?
if entry == nil
entry = VarEntry.new free
end
# Generates code for an inline function, with the given *tree* being the `Trees::TreeCall`
# that caused the function call. The other parameters are as described in the more general
# `#generate!` call.
def generate!(tree, function : Builtin::InlineFunction, table, target, free)
function.generate!(self, tree.params, table, target, free)
end
# Generates code for a tree or a builtin function (that is, a call is actually necessary).
# I is set to the current stack pointer, the registers are stored, and the call is made.
# The registers are then restored. The other parameters are as described in the more general
# `#generate!` call.
def generate!(tree, function : Trees::TreeFunction | Builtin::BuiltinFunction, table, target, free)
start_at = free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Store variables
store (start_at - 1) unless start_at == 0
# Increment I and stack position
load free, start_at
opr TokenType::OpAdd, STACK_REG, free
addi free
# Calculate the parameters
tree.params.each do |param|
generate! param, table, free, free + 1
free += 1
table[tree.name] = entry
end
raise "Unknown variable" unless entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
return 1
when TreeAssign
entry = table[tree.name]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
when TreeIf
generate! tree.condition, table, free, free + 1
sne free, 0
jump_inst = jr 0
# Call the function
tree.params.size.times do |time|
loadr time, time + start_at
end
call tree.name
old_size = @instructions.size
generate! tree.block, table, free, free + 1
jump_after = jr 0
jump_inst.offset = @instructions.size - old_size + 1
old_size = @instructions.size
generate! tree.otherwise, table, free, free + 1 if tree.otherwise
jump_after.offset = @instructions.size - old_size + 1
when TreeWhile
before_cond = @instructions.size
generate! tree.condition, table, free, free + 1
sne free, 0
cond_jump = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
after_jump = jr 0
cond_jump.offset = @instructions.size - old_size + 1
after_jump.offset = before_cond - instructions.size + 1
when TreeReturn
generate! tree.rvalue, table, RETURN_REG, free
ret
# Reduce stack pointer
load free, start_at
opr TokenType::OpSub, STACK_REG, free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Restore
restore (start_at - 1) unless start_at == 0
# Get call value into target
loadr target, RETURN_REG
end
return 0
end
def generate!
generate!(@function.block, @table, -1, @registers)
return @instructions
# Generates code for a *tree*, using a symbol *table*
# housing all the names for identifiers in the code.
# The result is stored into the *target* register,
# and the *free* register is the next register into
# which a value can be stored for "scratch work".
def generate!(tree, table, target, free)
case tree
when Trees::TreeId
entry = table[tree.id]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
loadr target, entry.register
when Trees::TreeLit
load target, tree.lit
when Trees::TreeOp
generate! tree.left, table, target, free
generate! tree.right, table, free, free + 1
opr tree.op, target, free
when Trees::TreeCall
entry = table[tree.name]?
raise "Unknown function" unless entry &&
entry.is_a?(FunctionEntry)
function = entry.function
raise "Invalid call" if tree.params.size != function.param_count
generate! tree, function, table, target, free
when Trees::TreeBlock
table = Table.new(table)
tree.children.each do |child|
free += generate! child, table, free, free + 1
end
when Trees::TreeVar
entry = table[tree.name]?
if entry == nil
entry = VarEntry.new free
free += 1
table[tree.name] = entry
end
raise "Unknown variable" unless entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
return 1
when Trees::TreeAssign
entry = table[tree.name]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
when Trees::TreeIf
generate! tree.condition, table, free, free + 1
sne free, 0
jump_inst = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
jump_after = jr 0
jump_inst.offset = @instructions.size - old_size + 1
old_size = @instructions.size
generate! tree.otherwise, table, free, free + 1 if tree.otherwise
jump_after.offset = @instructions.size - old_size + 1
when Trees::TreeWhile
before_cond = @instructions.size
generate! tree.condition, table, free, free + 1
sne free, 0
cond_jump = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
after_jump = jr 0
cond_jump.offset = @instructions.size - old_size + 1
after_jump.offset = before_cond - instructions.size + 1
when Trees::TreeReturn
generate! tree.rvalue, table, RETURN_REG, free
ret
end
return 0
end
# Generates code for the function that was given to it.
def generate!
generate!(@function.block, @table, -1, @registers)
return @instructions
end
end
end
end

View File

@ -3,161 +3,197 @@ require "./constant_folder.cr"
require "./table.cr"
module Chalk
class Compiler
def initialize(@config : Config)
@logger = Logger.new STDOUT
@logger.debug("Initialized compiler")
@logger.level = Logger::DEBUG
end
private def create_trees(file)
string = File.read(file)
@logger.debug("Tokenizing")
lexer = Lexer.new
tokens = lexer.lex string
if tokens.size == 0 && string != ""
raise "Unable to tokenize file."
module Compiler
# Top-level class to tie together the various
# components, such as the `Lexer`,
# `ParserCombinators::Parser`, and `Optimizer`
class Compiler
# Creates a new compiler with the given *config*.
def initialize(@config : Ui::Config)
@logger = Logger.new STDOUT
@logger.debug("Initialized compiler")
@logger.level = Logger::DEBUG
end
@logger.debug("Finished tokenizing")
@logger.debug("Beginning parsing")
parser = Parser.new
if trees = parser.parse?(tokens)
@logger.debug("Finished parsing")
@logger.debug("Beginning constant folding")
folder = ConstantFolder.new
trees.map! do |tree|
@logger.debug("Constant folding #{tree.name}")
tree.apply(folder).as(TreeFunction)
# Reads a file an extracts instances of
# `Trees:TreeFunction`.
private def create_trees(file)
string = File.read(file)
@logger.debug("Tokenizing")
lexer = Lexer.new
tokens = lexer.lex string
if tokens.size == 0 && string != ""
raise "Unable to tokenize file."
end
@logger.debug("Done constant folding")
return trees
end
raise "Unable to parse file."
end
private def create_table(trees)
table = Table.new
@logger.debug("Creating symbol table")
trees.each do |tree|
@logger.debug("Storing #{tree.name} in symbol table")
table[tree.name] = FunctionEntry.new tree
end
@logger.debug("Done creating symbol table")
table["draw"] = FunctionEntry.new InlineDrawFunction.new
table["get_key"] = FunctionEntry.new InlineAwaitKeyFunction.new
table["get_font"] = FunctionEntry.new InlineGetFontFunction.new
table["set_delay"] = FunctionEntry.new InlineSetDelayFunction.new
table["get_delay"] = FunctionEntry.new InlineGetDelayFunction.new
return table
end
private def create_code(tree : TreeFunction, table)
generator = CodeGenerator.new table, tree
@logger.debug("Generating code for #{tree.name}")
return generator.generate!
end
private def create_code(tree : BuiltinFunction, table)
instructions = [] of Instruction
tree.generate!(instructions)
return instructions
end
private def create_code(trees : Array(TreeFunction), table)
code = {} of String => Array(Instruction)
trees.each do |tree|
code[tree.name] = create_code(tree, table)
end
return code
end
private def run_tree
trees = create_trees(@config.file)
trees.each do |it|
STDOUT << it
end
end
private def run_intermediate
trees = create_trees(@config.file)
table = create_table(trees)
code = create_code(trees, table)
code.each do |name, insts|
puts "Code for #{name}:"
insts.each { |it| puts it }
puts "-----"
end
end
private def generate_binary(table, instructions, dest)
context = InstructionContext.new table, instructions.size
binary = instructions.map_with_index { |it, i| it.to_bin(context, i).to_u16 }
binary.each do |inst|
first = (inst >> 8).to_u8
dest.write_byte(first)
second = (inst & 0xff).to_u8
dest.write_byte(second)
end
end
private def collect_calls(table)
open = Set(String).new
done = Set(String).new
open << "main"
while !open.empty?
first = open.first
open.delete first
entry = table[first]?
raise "Unknown function" unless entry && entry.is_a?(FunctionEntry)
function = entry.function
next if function.is_a?(InlineFunction)
done << first
next unless function.is_a?(TreeFunction)
visitor = CallVisitor.new
function.accept(visitor)
open.concat(visitor.calls - done)
end
return done
end
private def run_binary
all_instructions = [] of Instruction
trees = create_trees(@config.file)
table = create_table(trees)
names = collect_calls(table)
names.delete "main"
main_entry = table["main"]?.as(FunctionEntry)
all_instructions.concat create_code(main_entry.function.as(TreeFunction), table)
main_entry.addr = 0
all_instructions << JumpRelativeInstruction.new 0
names.each do |name|
entry = table[name]?.as(FunctionEntry)
entry.addr = all_instructions.size
function = entry.function
raise "Trying to compile inlined function" if function.is_a?(InlineFunction)
all_instructions.concat create_code(function, table)
all_instructions << ReturnInstruction.new
@logger.debug("Finished tokenizing")
@logger.debug("Beginning parsing")
parser = ParserCombinators::Parser.new
if trees = parser.parse?(tokens)
@logger.debug("Finished parsing")
@logger.debug("Beginning constant folding")
folder = Trees::ConstantFolder.new
trees.map! do |tree|
@logger.debug("Constant folding #{tree.name}")
tree.apply(folder).as(Trees::TreeFunction)
end
@logger.debug("Done constant folding")
return trees
end
raise "Unable to parse file."
end
file = File.open("out.ch8", "w")
generate_binary(table, all_instructions, file)
file.close
end
# Creates a default symbol table using the default functions,
# as well as the functions declared by *trees*
private def create_table(trees)
table = Table.new
@logger.debug("Creating symbol table")
trees.each do |tree|
@logger.debug("Storing #{tree.name} in symbol table")
table[tree.name] = FunctionEntry.new tree
end
@logger.debug("Done creating symbol table")
def run
case @config.mode
when OutputMode::Tree
run_tree
when OutputMode::Intermediate
run_intermediate
when OutputMode::Binary
run_binary
table["draw"] = FunctionEntry.new Builtin::InlineDrawFunction.new
table["get_key"] = FunctionEntry.new Builtin::InlineAwaitKeyFunction.new
table["get_font"] = FunctionEntry.new Builtin::InlineGetFontFunction.new
table["set_delay"] = FunctionEntry.new Builtin::InlineSetDelayFunction.new
table["get_delay"] = FunctionEntry.new Builtin::InlineGetDelayFunction.new
return table
end
# Generates and optimizes intermediate representation for the given *tree*,
# looking up identifiers in the symbol *table*, and appending the given *instruction*
# at the end of the function to ensure correct program flow.
private def create_code(tree : Trees::TreeFunction, table, instruction = Ir::ReturnInstruction.new)
optimizer = Optimizer.new
generator = CodeGenerator.new table, tree
@logger.debug("Generating code for #{tree.name}")
code = generator.generate!
code << instruction
return optimizer.optimize(code)
end
# Generate code for a builtin function. Neither the *table* nor the *instruction*
# are used, and serve to allow function overloading.
private def create_code(function : Builtin::BuiltinFunction, table, instruction = nil)
instructions = [] of Ir::Instruction
function.generate!(instructions)
return instructions
end
# Creates a hash containing function names and their generated code.
# Only functions parsed from the file are compiled, and the *table*
# is used for looking up identifiers.
private def create_code(trees : Array(Trees::TreeFunction), table)
code = {} of String => Array(Ir::Instruction)
trees.each do |tree|
code[tree.name] = create_code(tree, table)
end
return code
end
# Runs in the tree `Ui::OutputMode`. The file is
# tokenized and parsed, and the result is printed
# to the standard output.
private def run_tree
trees = create_trees(@config.file)
trees.each do |it|
STDOUT << it
end
end
# Runs in the intermediate `Ui::OutputMode`. The file
# is tokenized and parsed, and for each function,
# intermediate representation is generated. However,
# an executable is not generated, and the IR
# is printed to the screen.
private def run_intermediate
trees = create_trees(@config.file)
table = create_table(trees)
code = create_code(trees, table)
code.each do |name, insts|
puts "Code for #{name}:"
insts.each { |it| puts it }
puts "-----"
end
end
# Creates binary from the given *instructions*,
# using the symbol *table* for lookups, and writes
# the output to *dest*
private def generate_binary(table, instructions, dest)
binary = instructions.map_with_index { |it, i| it.to_bin(table, instructions.size, i).to_u16 }
binary.each do |inst|
first = (inst >> 8).to_u8
dest.write_byte(first)
second = (inst & 0xff).to_u8
dest.write_byte(second)
end
end
# Find all calls performed by the functions
# stored in the *table*, starting at the main function.
private def collect_calls(table)
open = Set(String).new
done = Set(String).new
open << "main"
while !open.empty?
first = open.first
open.delete first
entry = table[first]?
raise "Unknown function" unless entry && entry.is_a?(FunctionEntry)
function = entry.function
next if function.is_a?(Builtin::InlineFunction)
done << first
next unless function.is_a?(Trees::TreeFunction)
visitor = Trees::CallVisitor.new
function.accept(visitor)
open.concat(visitor.calls - done)
end
return done
end
# Runs in the binary `Ui::OutputMode`. The file is
# converted into an executable.
private def run_binary
all_instructions = [] of Ir::Instruction
trees = create_trees(@config.file)
table = create_table(trees)
names = collect_calls(table)
names.delete "main"
main_entry = table["main"]?.as(FunctionEntry)
all_instructions.concat create_code(main_entry.function.as(Trees::TreeFunction),
table, Ir::JumpRelativeInstruction.new 0)
main_entry.addr = 0
names.each do |name|
entry = table[name]?.as(FunctionEntry)
entry.addr = all_instructions.size
function = entry.function
raise "Trying to compile inlined function" if function.is_a?(Builtin::InlineFunction)
all_instructions.concat create_code(function, table)
all_instructions << Ir::ReturnInstruction.new
end
file = File.open("out.ch8", "w")
generate_binary(table, all_instructions, file)
file.close
end
# Runs the compiler.
def run
case @config.mode
when Ui::OutputMode::Tree
run_tree
when Ui::OutputMode::Intermediate
run_intermediate
when Ui::OutputMode::Binary
run_binary
end
end
end
end

View File

@ -1,51 +1,70 @@
module Chalk
enum OutputMode
Tree,
Intermediate,
Binary
end
class Config
property file : String
property mode : OutputMode
def initialize(@file = "",
@mode = OutputMode::Tree)
module Ui
# The mode in which the compiler operates.
# Defines what actions are and aren't performed.
enum OutputMode
# The text is only parsed, and the result is printed to the screen.
Tree,
# The text is parsed and converted to intermediate representation.
# The intermediate representation is then printed to the screen.
Intermediate,
# The text is converted into a full CHIP-8 executable.
Binary
end
def self.parse!
config = self.new
OptionParser.parse! do |parser|
parser.banner = "Usage: chalk [arguments]"
parser.on("-m", "--mode=MODE", "Set the mode of the compiler.") do |mode|
case mode.downcase
when "tree", "t"
config.mode = OutputMode::Tree
when "intermediate", "i"
config.mode = OutputMode::Intermediate
when "binary", "b"
config.mode = OutputMode::Binary
else
puts "Invalid mode type. Using default."
# A configuration class created from the command-line parameters.
class Config
# Gets the file to be compiled.
getter file : String
# Sets the file to be compiled.
setter file : String
# Gets the mode in which the compiler should operate.
getter mode : OutputMode
# Sets the mode in which the compiler should operate.
setter mode : OutputMode
# Creates a new configuration.
def initialize(@file = "",
@mode = OutputMode::Tree)
end
# Reads a configuration from the command line options.
def self.parse!
config = self.new
OptionParser.parse! do |parser|
parser.banner = "Usage: chalk [arguments]"
parser.on("-m", "--mode=MODE", "Set the mode of the compiler.") do |mode|
case mode.downcase
when "tree", "t"
config.mode = OutputMode::Tree
when "intermediate", "i"
config.mode = OutputMode::Intermediate
when "binary", "b"
config.mode = OutputMode::Binary
else
puts "Invalid mode type. Using default."
end
end
parser.on("-f", "--file=FILE", "Set the input file to compile.") do |file|
config.file = file
end
parser.on("-h", "--help", "Show this message.") { puts parser }
end
parser.on("-f", "--file=FILE", "Set the input file to compile.") do |file|
config.file = file
end
parser.on("-h", "--help", "Show this message.") { puts parser }
return config
end
return config
end
def validate!
if file == ""
puts "No source file specified."
return false
elsif !File.exists? file
puts "Unable to open source file."
return false
# Validates the options provided, returning true if
# they are valid and false otherwise.
def validate!
if file == ""
puts "No source file specified."
return false
elsif !File.exists? file
puts "Unable to open source file."
return false
end
return true
end
return true
end
end
end

View File

@ -1,33 +1,37 @@
require "./tree.cr"
module Chalk
class ConstantFolder < Transformer
private def perform_op(op, left, right)
case op
when TokenType::OpAdd
left + right
when TokenType::OpSub
left - right
when TokenType::OpMul
left*right
when TokenType::OpDiv
left/right
when TokenType::OpAnd
left & right
when TokenType::OpOr
left | right
else TokenType::OpXor
left ^ right
module Trees
# `Trees::Transformer` that turns operations on
# Constants into constants.
class ConstantFolder < Transformer
private def perform_op(op, left, right)
case op
when Compiler::TokenType::OpAdd
left + right
when Compiler::TokenType::OpSub
left - right
when Compiler::TokenType::OpMul
left*right
when Compiler::TokenType::OpDiv
left/right
when Compiler::TokenType::OpAnd
left & right
when Compiler::TokenType::OpOr
left | right
else Compiler::TokenType::OpXor
left ^ right
end
end
end
def transform(tree : TreeOp)
if tree.left.is_a?(TreeLit) && tree.right.is_a?(TreeLit)
return TreeLit.new perform_op(tree.op,
tree.left.as(TreeLit).lit,
tree.right.as(TreeLit).lit)
def transform(tree : Trees::TreeOp)
if tree.left.is_a?(Trees::TreeLit) && tree.right.is_a?(Trees::TreeLit)
return Trees::TreeLit.new perform_op(tree.op,
tree.left.as(Trees::TreeLit).lit,
tree.right.as(Trees::TreeLit).lit)
end
return tree
end
return tree
end
end
end

View File

@ -1,75 +1,111 @@
module Chalk
module Emitter
def load(into, value)
inst = LoadInstruction.new into, value.to_i32
@instructions << inst
return inst
end
module Compiler
# Module to emit instructions and store
# them into an existing array.
module Emitter
# Emits an instruction to load a *value* into a register, *into*.
def load(into, value)
inst = Ir::LoadInstruction.new into, value.to_i32
@instructions << inst
return inst
end
def loadr(into, from)
inst = LoadRegInstruction.new into, from
@instructions << inst
return inst
end
# Emits an instruction to load a register, *from*, into
# another register, *into*
def loadr(into, from)
inst = Ir::LoadRegInstruction.new into, from
@instructions << inst
return inst
end
def op(op, into, from)
inst = OpInstruction.new op, into, from
@instructions << inst
return inst
end
# Emits an instruction that's converted
# to an operation, *op* that mutates the register, *into*,
# with the right hand operand *from*
def op(op, into, from)
inst = Ir::OpInstruction.new op, into, from
@instructions << inst
return inst
end
def opr(op, into, from)
inst = OpRegInstruction.new op, into, from
@instructions << inst
return inst
end
# Emits an instruction that's converted
# to an operation, *op*, that mutates the register, *into*,
# with the right hand operand (a register), *from*
def opr(op, into, from)
inst = Ir::OpRegInstruction.new op, into, from
@instructions << inst
return inst
end
def sne(l, r)
inst = SkipNeInstruction.new l, r
@instructions << inst
return inst
end
# Emits a "skip next instruction if not equal"
# instruction. The left hand side is a register,
# an the right hand side is a value.
def sne(l, r)
inst = Ir::SkipNeInstruction.new l, r
@instructions << inst
return inst
end
def jr(o)
inst = JumpRelativeInstruction.new o
@instructions << inst
return inst
end
# Emits an instruction to jump relative to
# where the instruction is.
# ```
# jr 0 # Infinite loop
# jr -1 # Run previous instruction
# jr 1 # pretty much a no-op.
# ```
def jr(o)
inst = Ir::JumpRelativeInstruction.new o
@instructions << inst
return inst
end
def store(up_to)
inst = StoreInstruction.new up_to
@instructions << inst
return inst
end
# Emits instruction that stores register 0 through *up_to* into
# memory at address I.
def store(up_to)
inst = Ir::StoreInstruction.new up_to
@instructions << inst
return inst
end
def restore(up_to)
inst = RestoreInstruction.new up_to
@instructions << inst
return inst
end
# Emits instruction that loads values from address I into
# register 0 through *up_t*
def restore(up_to)
inst = Ir::RestoreInstruction.new up_to
@instructions << inst
return inst
end
def ret
inst = ReturnInstruction.new
@instructions << inst
return inst
end
# Emits a return instruction.
def ret
inst = Ir::ReturnInstruction.new
@instructions << inst
return inst
end
def call(func)
inst = CallInstruction.new func
@instructions << inst
return inst
end
# Emits an instruction to call
# the given function name.
def call(func)
inst = Ir::CallInstruction.new func
@instructions << inst
return inst
end
def setis
inst = SetIStackInstruction.new
@instructions << inst
return inst
end
# Emits instruction to set I
# to the baste stack location. The stack
# pointer will need to be added to I
# to get the next available stack slot.
def setis
inst = Ir::SetIStackInstruction.new
@instructions << inst
return inst
end
def addi(reg)
inst = AddIRegInstruction.new reg
@instructions << inst
return inst
# Emits instruction to add the value of a
# register to I
def addi(reg)
inst = Ir::AddIRegInstruction.new reg
@instructions << inst
return inst
end
end
end
end

View File

@ -1,13 +1,16 @@
module Chalk
class CallVisitor < Visitor
property calls : Set(String)
module Trees
# Visitor that finds all function calls in a function.
class CallVisitor < Visitor
property calls : Set(String)
def initialize
@calls = Set(String).new
end
def initialize
@calls = Set(String).new
end
def visit(t : TreeCall)
@calls << t.name
def visit(t : TreeCall)
@calls << t.name
end
end
end
end

View File

@ -1,58 +1,65 @@
module Chalk
class InlineDrawFunction < InlineFunction
def initialize
@param_count = 3
end
def generate!(emitter, params, table, target, free)
if !params[2].is_a?(TreeLit)
raise "Third parameter must be a constant."
module Builtin
# Inline function to draw sprite at address I.
class InlineDrawFunction < InlineFunction
def initialize
@param_count = 3
end
emitter.generate! params[0], table, free, free + 1
emitter.generate! params[1], table, free + 1, free + 2
emitter.instructions << DrawInstruction.new free, free + 1, params[2].as(TreeLit).lit.to_i32
end
end
class InlineAwaitKeyFunction < InlineFunction
def initialize
@param_count = 0
def generate!(emitter, params, table, target, free)
if !params[2].is_a?(Trees::TreeLit)
raise "Third parameter must be a constant."
end
emitter.generate! params[0], table, free, free + 1
emitter.generate! params[1], table, free + 1, free + 2
emitter.instructions << Ir::DrawInstruction.new free, free + 1, params[2].as(Trees::TreeLit).lit.to_i32
end
end
def generate!(emitter, params, table, target, free)
emitter.instructions << AwaitKeyInstruction.new target
end
end
# Inline function to await for a key and return it.
class InlineAwaitKeyFunction < InlineFunction
def initialize
@param_count = 0
end
class InlineGetFontFunction < InlineFunction
def initialize
@param_count = 1
def generate!(emitter, params, table, target, free)
emitter.instructions << Ir::AwaitKeyInstruction.new target
end
end
def generate!(emitter, params, table, target, free)
emitter.generate! params[0], table, free, free + 1
emitter.instructions << GetFontInstruction.new free
end
end
# Inline function to get font for a given value.
class InlineGetFontFunction < InlineFunction
def initialize
@param_count = 1
end
class InlineSetDelayFunction < InlineFunction
def initialize
@param_count = 1
def generate!(emitter, params, table, target, free)
emitter.generate! params[0], table, free, free + 1
emitter.instructions << Ir::GetFontInstruction.new free
end
end
def generate!(emitter, params, table, target, free)
emitter.generate! params[0], table, free, free + 1
emitter.instructions << SetDelayTimerInstruction.new free
end
end
# Inline function to set the delay timer.
class InlineSetDelayFunction < InlineFunction
def initialize
@param_count = 1
end
class InlineGetDelayFunction < InlineFunction
def initialize
@param_count = 0
def generate!(emitter, params, table, target, free)
emitter.generate! params[0], table, free, free + 1
emitter.instructions << Ir::SetDelayTimerInstruction.new free
end
end
def generate!(emitter, params, table, target, free)
emitter.instructions << GetDelayTimerInstruction.new target
# Inline function to get the delay timer.
class InlineGetDelayFunction < InlineFunction
def initialize
@param_count = 0
end
def generate!(emitter, params, table, target, free)
emitter.instructions << Ir::GetDelayTimerInstruction.new target
end
end
end
end

View File

@ -1,373 +1,371 @@
require "./lexer.cr"
module Chalk
class Instruction
def to_bin(i, index)
return 0
end
end
class InstructionContext
property table : Table
property stack : Int32
def initialize(@table, @stack)
end
end
class LoadInstruction < Instruction
property register : Int32
property value : Int32
def initialize(@register, @value)
end
def to_s(io)
io << "load R"
@register.to_s(16, io)
io << " " << @value
end
def to_bin(i, index)
0x6000 | (@register << 8) | @value
end
end
class LoadRegInstruction < Instruction
property into : Int32
property from : Int32
def initialize(@into, @from)
end
def to_s(io)
io << "loadr R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(i, index)
0x8000 | (@into << 8) | (@from << 4)
end
end
class OpInstruction < Instruction
property op : TokenType
property into : Int32
property value : Int32
def initialize(@op, @into, @value)
end
def to_s(io)
io << "op " << op << " R"
@into.to_s(16, io)
io << " " << @value
end
def to_bin(i, index)
case op
when TokenType::OpAdd
return 0x7000 | (@into << 8) | @value
else
raise "Invalid instruction"
module Ir
# Base instruction class.
class Instruction
# Converts the instruction to binary, using
# A table for symbol lookups, the stack position,
# and the inex of the instruction.
def to_bin(table, stack, index)
return 0
end
end
end
class OpRegInstruction < Instruction
property op : TokenType
property into : Int32
property from : Int32
def initialize(@op, @into, @from)
end
def to_s(io)
io << "opr " << op << " R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(i, index)
code = 0
case op
when TokenType::OpAdd
code = 4
when TokenType::OpSub
code = 5
when TokenType::OpOr
code = 1
when TokenType::OpAnd
code = 2
when TokenType::OpXor
code = 3
else
raise "Invalid instruction"
# Instruction to load a value into a register.
class LoadInstruction < Instruction
def initialize(@register : Int32, @value : Int32)
end
return 0x8000 | (@into << 8) | (@from << 4) | code
end
end
class StoreInstruction < Instruction
property up_to : Int32
def to_s(io)
io << "load R"
@register.to_s(16, io)
io << " " << @value
end
def initialize(@up_to)
def to_bin(table, stack, index)
0x6000 | (@register << 8) | @value
end
end
def to_s(io)
io << "store R"
@up_to.to_s(16, io)
# Instruction to load a register into another register.
class LoadRegInstruction < Instruction
# Gets the register being written to.
getter into
# Gets the register being used as right-hand operand.
getter from
def initialize(@into : Int32, @from : Int32)
end
def to_s(io)
io << "loadr R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
0x8000 | (@into << 8) | (@from << 4)
end
end
def to_bin(i, index)
return 0xf055 | (@up_to << 8)
end
end
# Instruction to perform an operation on a register and a value,
# storing the output back into the register.
class OpInstruction < Instruction
def initialize(@op : Compiler::TokenType, @into : Int32, @value : Int32)
end
class RestoreInstruction < Instruction
property up_to : Int32
def to_s(io)
io << "op " << @op << " R"
@into.to_s(16, io)
io << " " << @value
end
def initialize(@up_to)
def to_bin(table, stack, index)
case @op
when Compiler::TokenType::OpAdd
return 0x7000 | (@into << 8) | @value
else
raise "Invalid instruction"
end
end
end
def to_s(io)
io << "restore R"
@up_to.to_s(16, io)
# Instruction to perform an operation on a register and another register,
# storing the output back into left hand register.
class OpRegInstruction < Instruction
def initialize(@op : Compiler::TokenType, @into : Int32, @from : Int32)
end
def to_s(io)
io << "opr " << @op << " R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
code = 0
case @op
when Compiler::TokenType::OpAdd
code = 4
when Compiler::TokenType::OpSub
code = 5
when Compiler::TokenType::OpOr
code = 1
when Compiler::TokenType::OpAnd
code = 2
when Compiler::TokenType::OpXor
code = 3
else
raise "Invalid instruction"
end
return 0x8000 | (@into << 8) | (@from << 4) | code
end
end
def to_bin(i, index)
return 0xf065 | (@up_to << 8)
end
end
# Instruction to write registers to memory at address I.
# The *up_to* parameter specifies the highest register
# that should be stored.
class StoreInstruction < Instruction
def initialize(@up_to : Int32)
end
class ReturnInstruction < Instruction
def initialize
def to_s(io)
io << "store R"
@up_to.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf055 | (@up_to << 8)
end
end
def to_s(io)
io << "return"
# Instruction to read registers from memory at address I.
# The *up_to* parameter specifies the highest register
# that should be read into.
class RestoreInstruction < Instruction
def initialize(@up_to : Int32)
end
def to_s(io)
io << "restore R"
@up_to.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf065 | (@up_to << 8)
end
end
def to_bin(i, index)
return 0x00ee
end
end
# Instruction to return from a call.
class ReturnInstruction < Instruction
def initialize
end
class JumpRelativeInstruction < Instruction
property offset : Int32
def to_s(io)
io << "return"
end
def initialize(@offset)
def to_bin(table, stack, index)
return 0x00ee
end
end
def to_s(io)
io << "jr " << @offset
# Instruction to jump relative to its own position.
class JumpRelativeInstruction < Instruction
# Gets the offset of this instruction.
getter offset
# Sets the offset of this instruction
setter offset
def initialize(@offset : Int32)
end
def to_s(io)
io << "jr " << @offset
end
def to_bin(table, stack, index)
return 0x1000 | ((@offset + index) * 2 + 0x200)
end
end
def to_bin(i, index)
return 0x1000 | ((@offset + index) * 2 + 0x200)
end
end
# Instruction to skip the next instruction if
# the left-hand register is equal to the right-hand value.
class SkipEqInstruction < Instruction
def initialize(@left : Int32, @right : Int32)
end
class SkipEqInstruction < Instruction
property left : Int32
property right : Int32
def to_s(io)
io << "seq R"
@left.to_s(16, io)
io << " " << @right
end
def initialize(@left, @right)
def to_bin(table, stack, index)
return 0x3000 | (@left << 8) | @right
end
end
def to_s(io)
io << "seq R"
@left.to_s(16, io)
io << " " << right
# Instruction to skip the next instruction if
# the left-hand register is not equal to the right-hand value.
class SkipNeInstruction < Instruction
def initialize(@left : Int32, @right : Int32)
end
def to_s(io)
io << "sne R"
@left.to_s(16, io)
io << " " << @right
end
def to_bin(table, stack, index)
return 0x4000 | (@left << 8) | @right
end
end
def to_bin(i, index)
return 0x3000 | (@left << 8) | @right
end
end
# Instruction to skip the next instruction if
# the left-hand register is equal to the right-hand register.
class SkipRegEqInstruction < Instruction
def initialize(@left : Int32, @right : Int32)
end
class SkipNeInstruction < Instruction
property left : Int32
property right : Int32
def to_s(io)
io << "seqr R"
@left.to_s(16, io)
io << " R"
@right.to_s(16, io)
end
def initialize(@left, @right)
def to_bin(table, stack, index)
return 0x5000 | (@left << 8) | (@right << 4)
end
end
def to_s(io)
io << "sne R"
@left.to_s(16, io)
io << " " << right
# Instruction to skip the next instruction if
# the left-hand register is not equal to the right-hand register.
class SkipRegNeInstruction < Instruction
def initialize(@left : Int32, @right : Int32)
end
def to_s(io)
io << "sner R"
@left.to_s(16, io)
io << " R"
@right.to_s(16, io)
end
def to_bin(table, stack, index)
return 0x9000 | (@left << 8) | (@right << 4)
end
end
def to_bin(i, index)
return 0x4000 | (@left << 8) | @right
end
end
# Instruction to call a function by name.
class CallInstruction < Instruction
# Gets the name of the function being called.
getter name
class SkipRegEqInstruction < Instruction
property left : Int32
property right : Int32
def initialize(@name : String)
end
def initialize(@left, @right)
def to_s(io)
io << "call " << @name
end
def to_bin(table, stack, index)
return 0x2000 | (table[name]?.as(Compiler::FunctionEntry).addr * 2 + 0x200)
end
end
def to_s(io)
io << "seqr R"
@left.to_s(16, io)
io << " R"
@right.to_s(16, io)
# Instruction to set I to the base position of the stack.
class SetIStackInstruction < Instruction
def to_s(io)
io << "setis"
end
def to_bin(table, stack, index)
return 0xa000 | (stack * 2 + 0x200)
end
end
def to_bin(i, index)
return 0x5000 | (@left << 8) | (@right << 4)
end
end
# Instruction to add a register to I.
class AddIRegInstruction < Instruction
def initialize(@reg : Int32)
end
class SkipRegNeInstruction < Instruction
property left : Int32
property right : Int32
def to_s(io)
io << "addi R"
@reg.to_s(16, io)
end
def initialize(@left, @right)
def to_bin(table, stack, index)
return 0xf000 | (@reg << 8) | 0x1e
end
end
def to_s(io)
io << "sner R"
@left.to_s(16, io)
io << " R"
@right.to_s(16, io)
# Instruction to draw on screen.
# The x and y coordinates specify the position of the sprite,
# and the height gives the height of the sprite.
class DrawInstruction < Instruction
def initialize(@x : Int32, @y : Int32, @height : Int32)
end
def to_s(io)
io << "draw R"
@x.to_s(16, io)
io << " R"
@y.to_s(16, io)
io << " " << @height
end
def to_bin(table, stack, index)
return 0xd000 | (@x << 8) | (@y << 4) | @height
end
end
def to_bin(i, index)
return 0x9000 | (@left << 8) | (@right << 4)
end
end
# Instruction to await a key press and store it into a register.
class AwaitKeyInstruction < Instruction
def initialize(@into : Int32)
end
class CallInstruction < Instruction
property name : String
def to_s(io)
io << "getk R"
@into.to_s(16, io)
end
def initialize(@name)
def to_bin(table, stack, index)
return 0xf00a | (@into << 8)
end
end
def to_s(io)
io << "call " << @name
# Instruction to set I to the font given by the value
# of a register.
class GetFontInstruction < Instruction
def initialize(@from : Int32)
end
def to_s(io)
io << "font R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf029 | (@from << 8)
end
end
def to_bin(i, index)
return 0x2000 | (i.table[name]?.as(FunctionEntry).addr * 2 + 0x200)
end
end
# Instruction to set the delay timer to the value
# of the given register.
class SetDelayTimerInstruction < Instruction
def initialize(@from : Int32)
end
class SetIStackInstruction < Instruction
def to_s(io)
io << "setis"
def to_s(io)
io << "set_delay R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf015 | (@from << 8)
end
end
def to_bin(i, index)
return 0xa000 | (i.stack * 2 + 0x200)
end
end
# Instruction to get the delay timer, and store
# the value into the given register.
class GetDelayTimerInstruction < Instruction
def initialize(@into : Int32)
end
class AddIRegInstruction < Instruction
property reg : Int32
def to_s(io)
io << "get_delay R"
@into.to_s(16, io)
end
def initialize(@reg)
end
def to_s(io)
io << "addi R"
reg.to_s(16, io)
end
def to_bin(i, index)
return 0xf000 | (@reg << 8) | 0x1e
end
end
class DrawInstruction < Instruction
property x : Int32
property y : Int32
property height : Int32
def initialize(@x, @y, @height)
end
def to_s(io)
io << "draw R"
x.to_s(16, io)
io << " R"
y.to_s(16, io)
io << " " << height
end
def to_bin(i, index)
return 0xd000 | (@x << 8) | (@y << 4) | height
end
end
class AwaitKeyInstruction < Instruction
property into : Int32
def initialize(@into)
end
def to_s(io)
io << "getk R"
@into.to_s(16, io)
end
def to_bin(i, index)
return 0xf00a | (@into << 8)
end
end
class GetFontInstruction < Instruction
property from : Int32
def initialize(@from)
end
def to_s(io)
io << "font R"
@from.to_s(16, io)
end
def to_bin(i, index)
return 0xf029 | (@from << 8)
end
end
class SetDelayTimerInstruction < Instruction
property from : Int32
def initialize(@from)
end
def to_s(io)
io << "set_delay R"
@from.to_s(16, io)
end
def to_bin(i, index)
return 0xf015 | (@from << 8)
end
end
class GetDelayTimerInstruction < Instruction
property into : Int32
def initialize(@into)
end
def to_s(io)
io << "get_delay R"
@into.to_s(16, io)
end
def to_bin(i, index)
return 0xf007 | (@into << 8)
def to_bin(table, stack, index)
return 0xf007 | (@into << 8)
end
end
end
end

View File

@ -1,82 +1,93 @@
require "lex"
module Chalk
enum TokenType
Any,
Str,
Id,
LitDec,
LitBin,
LitHex,
OpAdd
OpSub
OpMul
OpDiv
OpOr
OpAnd
OpXor
KwSprite
KwInline
KwFun
KwU0
KwU8
KwU12
KwVar
KwIf
KwElse
KwWhile
KwReturn
end
class Token
def initialize(@string : String, @type : TokenType)
module Compiler
# The type of a token that can be lexed.
enum TokenType
Any,
Str,
Id,
LitDec,
LitBin,
LitHex,
OpAdd
OpSub
OpMul
OpDiv
OpOr
OpAnd
OpXor
KwSprite
KwInline
KwFun
KwU0
KwU8
KwU12
KwVar
KwIf
KwElse
KwWhile
KwReturn
end
getter string : String
getter type : TokenType
end
# A class that stores the string it matched and its token type.
class Token
def initialize(@string : String, @type : TokenType)
end
class Lexer
def initialize
@lexer = Lex::Lexer.new
@lexer.add_pattern(".", TokenType::Any.value)
@lexer.add_pattern("\"(\\\\\"|[^\"])*\"",
TokenType::Str.value)
@lexer.add_pattern("[a-zA-Z_][a-zA-Z_0-9]*",
TokenType::Id.value)
@lexer.add_pattern("[0-9]+",
TokenType::LitDec.value)
@lexer.add_pattern("0b[0-1]+",
TokenType::LitBin.value)
@lexer.add_pattern("0x[0-9a-fA-F]+",
TokenType::LitHex.value)
@lexer.add_pattern("\\+", TokenType::OpAdd.value)
@lexer.add_pattern("-", TokenType::OpSub.value)
@lexer.add_pattern("\\*", TokenType::OpMul.value)
@lexer.add_pattern("/", TokenType::OpDiv.value)
@lexer.add_pattern("&", TokenType::OpAdd.value)
@lexer.add_pattern("\\|", TokenType::OpOr.value)
@lexer.add_pattern("^", TokenType::OpXor.value)
@lexer.add_pattern("sprite", TokenType::KwSprite.value)
@lexer.add_pattern("inline", TokenType::KwInline.value)
@lexer.add_pattern("fun", TokenType::KwFun.value)
@lexer.add_pattern("u0", TokenType::KwU0.value)
@lexer.add_pattern("u8", TokenType::KwU8.value)
@lexer.add_pattern("u12", TokenType::KwU12.value)
@lexer.add_pattern("var", TokenType::KwVar.value)
@lexer.add_pattern("if", TokenType::KwIf.value)
@lexer.add_pattern("else", TokenType::KwElse.value)
@lexer.add_pattern("while", TokenType::KwWhile.value)
@lexer.add_pattern("return", TokenType::KwReturn.value)
# Gets the string this token represents.
getter string : String
# Gets the type of this token.
getter type : TokenType
end
def lex(string)
return @lexer.lex(string)
.select { |t| !t[0][0].whitespace? }
.map do |tuple|
string, id = tuple
Token.new(string, TokenType.new(id))
end
# Creates a new Lexer with default token values.
# The lexer is backed by liblex. When a string is
# matched by several tokens, the longest match is chosen
# first, followed by the match with the highest enum value.
class Lexer
def initialize
@lexer = Lex::Lexer.new
@lexer.add_pattern(".", TokenType::Any.value)
@lexer.add_pattern("\"(\\\\\"|[^\"])*\"",
TokenType::Str.value)
@lexer.add_pattern("[a-zA-Z_][a-zA-Z_0-9]*",
TokenType::Id.value)
@lexer.add_pattern("[0-9]+",
TokenType::LitDec.value)
@lexer.add_pattern("0b[0-1]+",
TokenType::LitBin.value)
@lexer.add_pattern("0x[0-9a-fA-F]+",
TokenType::LitHex.value)
@lexer.add_pattern("\\+", TokenType::OpAdd.value)
@lexer.add_pattern("-", TokenType::OpSub.value)
@lexer.add_pattern("\\*", TokenType::OpMul.value)
@lexer.add_pattern("/", TokenType::OpDiv.value)
@lexer.add_pattern("&", TokenType::OpAdd.value)
@lexer.add_pattern("\\|", TokenType::OpOr.value)
@lexer.add_pattern("^", TokenType::OpXor.value)
@lexer.add_pattern("sprite", TokenType::KwSprite.value)
@lexer.add_pattern("inline", TokenType::KwInline.value)
@lexer.add_pattern("fun", TokenType::KwFun.value)
@lexer.add_pattern("u0", TokenType::KwU0.value)
@lexer.add_pattern("u8", TokenType::KwU8.value)
@lexer.add_pattern("u12", TokenType::KwU12.value)
@lexer.add_pattern("var", TokenType::KwVar.value)
@lexer.add_pattern("if", TokenType::KwIf.value)
@lexer.add_pattern("else", TokenType::KwElse.value)
@lexer.add_pattern("while", TokenType::KwWhile.value)
@lexer.add_pattern("return", TokenType::KwReturn.value)
end
# Converts a string into tokens.
def lex(string)
return @lexer.lex(string)
.select { |t| !t[0][0].whitespace? }
.map do |tuple|
string, id = tuple
Token.new(string, TokenType.new(id))
end
end
end
end
end

View File

@ -1,41 +1,70 @@
module Chalk
class Optimizer
private def check_dead(inst)
if inst.is_a?(LoadRegInstruction)
return inst.from == inst.into
module Compiler
# Class to optimize instructions.
class Optimizer
# Checks if *inst* is "dead code",
# an instruction that is completely useless.
private def check_dead(inst)
if inst.is_a?(Ir::LoadRegInstruction)
return inst.from == inst.into
end
return false
end
return false
end
private def optimize!(instructions, range)
offset = 0
range.each do |index|
if check_dead(instructions[index + offset])
instructions.delete_at(index + offset)
offset -= 1
# Optimizes *instructions* in the basic block given by the *range*,
# storing addresses of instructions to be deleted into *deletions*,
# and the number of deleted instructions so far into *deletions_at*
private def optimize!(instructions, range, deletions, deletions_at)
range.each do |index|
if check_dead(instructions[index])
deletions << index
end
deletions_at[index] = deletions.size
end
end
return offset
end
def optimize(instructions)
instructions = instructions.dup
block_boundaries = [instructions.size]
instructions.each_with_index do |inst, i|
if inst.is_a?(JumpRelativeInstruction)
block_boundaries << (inst.offset + i)
# Optimizes the given list of instructions.
# The basic blocks are inferred from the various
# jumps and skips.
def optimize(instructions)
instructions = instructions.dup
block_boundaries = [instructions.size]
instructions.each_with_index do |inst, i|
if inst.is_a?(Ir::JumpRelativeInstruction)
block_boundaries << (i + 1)
block_boundaries << (inst.offset + i)
end
if inst.is_a?(Ir::SkipNeInstruction | Ir::SkipEqInstruction |
Ir::SkipRegEqInstruction | Ir::SkipRegNeInstruction)
block_boundaries << (i + 1)
end
end
end
block_boundaries.sort!
block_boundaries.uniq!.sort!
previous = 0
offset = 0
block_boundaries.each do |boundary|
range = (previous + offset)...(boundary + offset)
offset += optimize!(instructions, range)
previous = boundary
previous = 0
deletions = [] of Int32
deletions_at = {} of Int32 => Int32
block_boundaries.each do |boundary|
range = previous...boundary
optimize!(instructions, range, deletions, deletions_at)
previous = boundary
end
instructions.each_with_index do |inst, i|
next if !inst.is_a?(Ir::JumpRelativeInstruction)
jump_to = inst.offset + i
next unless deletions_at[jump_to]?
deletions_offset = deletions_at[i] - deletions_at[jump_to]
inst.offset += deletions_offset
end
deletions.reverse!
deletions.each do |i|
instructions.delete_at i
end
return instructions
end
return instructions
end
end
end

View File

@ -1,173 +1,195 @@
require "./parser_builder.cr"
module Chalk
class Parser
include ParserBuilder
module ParserCombinators
# Parser created out of the various parser combinators.
class Parser
include ParserBuilder
private def create_type
either(type(TokenType::KwU0), type(TokenType::KwU8), type(TokenType::KwU12))
end
private def create_lit
dec_parser = type(TokenType::LitDec).transform &.string.to_i64
hex_parser = type(TokenType::LitHex).transform &.string.lchop("0x").to_i64(16)
bin_parser = type(TokenType::LitBin).transform &.string.lchop("0b").to_i64(2)
lit_parser = either(dec_parser, hex_parser, bin_parser).transform { |it| TreeLit.new(it).as(Tree) }
return lit_parser
end
private def create_op_expr(atom, op)
pl = PlaceholderParser(Tree).new
recurse = atom.then(op).then(pl).transform do |arr|
arr = arr.flatten
TreeOp.new(
arr[1].as(Token).type,
arr[0].as(Tree),
arr[2].as(Tree)).as(Tree)
# Creates a parser for a type.
private def create_type
either(type(Compiler::TokenType::KwU0), type(Compiler::TokenType::KwU8), type(Compiler::TokenType::KwU12))
end
pl.parser = either(recurse, atom)
return pl
end
private def create_op_exprs(atom, ops)
ops.reduce(atom) do |previous, current|
create_op_expr(previous, current)
# Creates a parser for an integer literal.
private def create_lit
dec_parser = type(Compiler::TokenType::LitDec).transform &.string.to_i64
hex_parser = type(Compiler::TokenType::LitHex).transform &.string.lchop("0x").to_i64(16)
bin_parser = type(Compiler::TokenType::LitBin).transform &.string.lchop("0b").to_i64(2)
lit_parser = either(dec_parser, hex_parser, bin_parser).transform { |it| Trees::TreeLit.new(it).as(Trees::Tree) }
return lit_parser
end
end
private def create_call(expr)
call = type(TokenType::Id).then(char '(').then(delimited(expr, char ',')).then(char ')').transform do |arr|
arr = arr.flatten
name = arr[0].as(Token).string
params = arr[2..arr.size - 2].map &.as(Tree)
TreeCall.new(name, params).as(Tree)
end
return call
end
private def create_expr
expr_place = PlaceholderParser(Tree).new
literal = create_lit
id = type(TokenType::Id).transform { |it| TreeId.new(it.string).as(Tree) }
call = create_call(expr_place)
atom = either(literal, call, id)
ops = [either(type(TokenType::OpMul), type(TokenType::OpDiv)),
either(type(TokenType::OpAdd), type(TokenType::OpSub)),
type(TokenType::OpXor),
type(TokenType::OpAnd),
type(TokenType::OpOr)]
expr = create_op_exprs(atom, ops)
expr_place.parser = expr
return expr
end
private def create_var(expr)
var = type(TokenType::KwVar).then(type(TokenType::Id)).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[1].as(Token).string
exp = arr[arr.size - 2].as(Tree)
TreeVar.new(name, exp).as(Tree)
end
return var
end
private def create_assign(expr)
assign = type(TokenType::Id).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[0].as(Token).string
exp = arr[arr.size - 2].as(Tree)
TreeAssign.new(name, exp).as(Tree)
end
return assign
end
private def create_basic(expr)
basic = expr.then(char ';').transform do |arr|
arr.flatten[0].as(Tree)
end
return basic
end
private def create_if(expr, block)
iff = type(TokenType::KwIf).then(char '(').then(expr).then(char ')').then(block)
.then(optional(type(TokenType::KwElse).then(block)))
.transform do |arr|
# Creates a parser for an operation with a given *atom* parser
# and *op* parser.
private def create_op_expr(atom, op)
pl = PlaceholderParser(Trees::Tree).new
recurse = atom.then(op).then(pl).transform do |arr|
arr = arr.flatten
cond = arr[2].as(Tree)
code = arr[4].as(Tree)
otherwise = arr.size == 7 ? arr[6].as(Tree) : nil
TreeIf.new(cond, code, otherwise).as(Tree)
Trees::TreeOp.new(
arr[1].as(Compiler::Token).type,
arr[0].as(Trees::Tree),
arr[2].as(Trees::Tree)).as(Trees::Tree)
end
return iff
end
private def create_while(expr, block)
whilee = type(TokenType::KwWhile).then(char '(').then(expr).then(char ')').then(block).transform do |arr|
arr = arr.flatten
cond = arr[2].as(Tree)
code = arr[4].as(Tree)
TreeWhile.new(cond, code).as(Tree)
pl.parser = either(recurse, atom)
return pl
end
return whilee
end
private def create_return(expr)
returnn = type(TokenType::KwReturn).then(expr).then(char ';').transform do |arr|
arr = arr.flatten
value = arr[1].as(Tree)
TreeReturn.new(value).as(Tree)
# Creates a parser to parse layers of *ops* with multiple
# levels of precedence, specified by their order. The *atom*
# is the most basic expression.
private def create_op_exprs(atom, ops)
ops.reduce(atom) do |previous, current|
create_op_expr(previous, current)
end
end
return returnn
end
private def create_block(statement)
block = char('{').then(many(statement)).then(char '}').transform do |arr|
arr = arr.flatten
params = arr[1..arr.size - 2].map &.as(Tree)
TreeBlock.new(params).as(Tree)
end
return block
end
private def create_statement_block
statement_place = PlaceholderParser(Tree).new
expr = create_expr
block = create_block(statement_place)
iff = create_if(expr, block)
whilee = create_while(expr, block)
returnn = create_return(expr)
var = create_var(expr)
assign = create_assign(expr)
basic = create_basic(expr)
statement = either(basic, var, assign, block, iff, whilee, returnn)
statement_place.parser = statement
return {statement, block}
end
private def create_func(block, type)
func = type(TokenType::KwFun).then(type(TokenType::Id))
.then(char '(').then(delimited(type(TokenType::Id), char ',')).then(char ')')
.then(char ':').then(type)
.then(block).transform do |arr|
# Creates a parser for a call, with the given expression parser.
private def create_call(expr)
call = type(Compiler::TokenType::Id).then(char '(').then(delimited(expr, char ',')).then(char ')').transform do |arr|
arr = arr.flatten
name = arr[1].as(Token).string
params = arr[3..arr.size - 5].map &.as(Token).string
code = arr[arr.size - 1].as(Tree)
type = arr[arr.size - 2].as(Token).type
TreeFunction.new(name, params, code)
name = arr[0].as(Compiler::Token).string
params = arr[2..arr.size - 2].map &.as(Trees::Tree)
Trees::TreeCall.new(name, params).as(Trees::Tree)
end
return func
end
return call
end
def initialize
_, block = create_statement_block
@parser = many(create_func(block, create_type)).as(BasicParser(Array(TreeFunction)))
end
# Creates a parser for an expression.
private def create_expr
expr_place = PlaceholderParser(Trees::Tree).new
literal = create_lit
id = type(Compiler::TokenType::Id).transform { |it| Trees::TreeId.new(it.string).as(Trees::Tree) }
call = create_call(expr_place)
atom = either(literal, call, id)
def parse?(tokens)
return @parser.parse?(tokens, 0).try &.[0]
ops = [either(type(Compiler::TokenType::OpMul), type(Compiler::TokenType::OpDiv)),
either(type(Compiler::TokenType::OpAdd), type(Compiler::TokenType::OpSub)),
type(Compiler::TokenType::OpXor),
type(Compiler::TokenType::OpAnd),
type(Compiler::TokenType::OpOr)]
expr = create_op_exprs(atom, ops)
expr_place.parser = expr
return expr
end
# Creates a parser for a var statement.
private def create_var(expr)
var = type(Compiler::TokenType::KwVar).then(type(Compiler::TokenType::Id)).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[1].as(Compiler::Token).string
exp = arr[arr.size - 2].as(Trees::Tree)
Trees::TreeVar.new(name, exp).as(Trees::Tree)
end
return var
end
# Creates a parser for an assignment statement.
private def create_assign(expr)
assign = type(Compiler::TokenType::Id).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[0].as(Compiler::Token).string
exp = arr[arr.size - 2].as(Trees::Tree)
Trees::TreeAssign.new(name, exp).as(Trees::Tree)
end
return assign
end
# Creates a parser for a basic statement.
private def create_basic(expr)
basic = expr.then(char ';').transform do |arr|
arr.flatten[0].as(Trees::Tree)
end
return basic
end
# Creates a parser for an if statement.
private def create_if(expr, block)
iff = type(Compiler::TokenType::KwIf).then(char '(').then(expr).then(char ')').then(block)
.then(optional(type(Compiler::TokenType::KwElse).then(block)))
.transform do |arr|
arr = arr.flatten
cond = arr[2].as(Trees::Tree)
code = arr[4].as(Trees::Tree)
otherwise = arr.size == 7 ? arr[6].as(Trees::Tree) : nil
Trees::TreeIf.new(cond, code, otherwise).as(Trees::Tree)
end
return iff
end
# Creates a parser for a while loop.
private def create_while(expr, block)
whilee = type(Compiler::TokenType::KwWhile).then(char '(').then(expr).then(char ')').then(block).transform do |arr|
arr = arr.flatten
cond = arr[2].as(Trees::Tree)
code = arr[4].as(Trees::Tree)
Trees::TreeWhile.new(cond, code).as(Trees::Tree)
end
return whilee
end
# Creates a parser for a return.
private def create_return(expr)
returnn = type(Compiler::TokenType::KwReturn).then(expr).then(char ';').transform do |arr|
arr = arr.flatten
value = arr[1].as(Trees::Tree)
Trees::TreeReturn.new(value).as(Trees::Tree)
end
return returnn
end
# Creates a parser for a block of statements.
private def create_block(statement)
block = char('{').then(many(statement)).then(char '}').transform do |arr|
arr = arr.flatten
params = arr[1..arr.size - 2].map &.as(Trees::Tree)
Trees::TreeBlock.new(params).as(Trees::Tree)
end
return block
end
# Creates a statement and block parser, returning both.
private def create_statement_block
statement_place = PlaceholderParser(Trees::Tree).new
expr = create_expr
block = create_block(statement_place)
iff = create_if(expr, block)
whilee = create_while(expr, block)
returnn = create_return(expr)
var = create_var(expr)
assign = create_assign(expr)
basic = create_basic(expr)
statement = either(basic, var, assign, block, iff, whilee, returnn)
statement_place.parser = statement
return {statement, block}
end
# Creates a parser for a function declaration.
private def create_func(block, type)
func = type(Compiler::TokenType::KwFun).then(type(Compiler::TokenType::Id))
.then(char '(').then(delimited(type(Compiler::TokenType::Id), char ',')).then(char ')')
.then(char ':').then(type)
.then(block).transform do |arr|
arr = arr.flatten
name = arr[1].as(Compiler::Token).string
params = arr[3..arr.size - 5].map &.as(Compiler::Token).string
code = arr[arr.size - 1].as(Trees::Tree)
type = arr[arr.size - 2].as(Compiler::Token).type
Trees::TreeFunction.new(name, params, code)
end
return func
end
def initialize
_, block = create_statement_block
@parser = many(create_func(block, create_type)).as(BasicParser(Array(Trees::TreeFunction)))
end
# Parses the given tokens into a tree.
def parse?(tokens)
return @parser.parse?(tokens, 0).try &.[0]
end
end
end
end

View File

@ -2,37 +2,47 @@ require "./lexer.cr"
require "./parsers.cr"
module Chalk
module ParserBuilder
def type(type) : BasicParser(Token)
return TypeParser.new(type).as(BasicParser(Token))
end
module ParserCombinators
module ParserBuilder
# Creates a parser for a given token type.
def type(type) : BasicParser(Compiler::Token)
return TypeParser.new(type).as(BasicParser(Compiler::Token))
end
def char(type) : BasicParser(Token)
return CharParser.new(type).as(BasicParser(Token))
end
# Creates a parser for a specific character.
def char(type) : BasicParser(Compiler::Token)
return CharParser.new(type).as(BasicParser(Compiler::Token))
end
def transform(parser : BasicParser(T), &transform : T -> R) forall T, R
return TransformParser.new(parser, &transform).as(BasicParser(R))
end
# Creates a parser that transforms a value according to a block.
def transform(parser : BasicParser(T), &transform : T -> R) forall T, R
return TransformParser.new(parser, &transform).as(BasicParser(R))
end
def optional(parser : BasicParser(T)) : BasicParser(T?) forall T
return OptionalParser.new(parser).as(BasicParser(T?))
end
# Creates a parser that allows for failure to match.
def optional(parser : BasicParser(T)) : BasicParser(T?) forall T
return OptionalParser.new(parser).as(BasicParser(T?))
end
def either(*args : BasicParser(T)) : BasicParser(T) forall T
return EitherParser.new(args.to_a).as(BasicParser(T))
end
# Creates a parser that tries several parsers in sequence until one succeeds.
def either(*args : BasicParser(T)) : BasicParser(T) forall T
return EitherParser.new(args.to_a).as(BasicParser(T))
end
def many(parser : BasicParser(T)) : BasicParser(Array(T)) forall T
return ManyParser.new(parser).as(BasicParser(Array(T)))
end
# Creates a parser that parses one or more of the given parsers.
def many(parser : BasicParser(T)) : BasicParser(Array(T)) forall T
return ManyParser.new(parser).as(BasicParser(Array(T)))
end
def delimited(parser : BasicParser(T), delimiter : BasicParser(R)) : BasicParser(Array(T)) forall T, R
return DelimitedParser.new(parser, delimiter).as(BasicParser(Array(T)))
end
# Creates a parser that parses one parser delimited by another.
def delimited(parser : BasicParser(T), delimiter : BasicParser(R)) : BasicParser(Array(T)) forall T, R
return DelimitedParser.new(parser, delimiter).as(BasicParser(Array(T)))
end
def then(first : BasicParser(T), second : BasicParser(R)) forall T, R
return NextParser.new(first, second).as(BasicParser(Array(T | R)))
# Creates a parser that parses one parser, then the next.
def then(first : BasicParser(T), second : BasicParser(R)) forall T, R
return NextParser.new(first, second).as(BasicParser(Array(T | R)))
end
end
end
end

View File

@ -1,146 +1,171 @@
module Chalk
abstract class BasicParser(T)
abstract def parse?(tokens : Array(Token),
index : Int64) : Tuple(T, Int64)?
module ParserCombinators
# Abstract class for a parser function,
# as used in parser combinators. This is basically
# a building block of parsing.
abstract class BasicParser(T)
# Attempts to parse the given *tokens*, starting at the given *index*.
abstract def parse?(tokens : Array(Compiler::Token),
index : Int64) : Tuple(T, Int64)?
def parse(tokens, index)
return parse?(tokens, index).not_nil!
end
def transform(&transform : T -> R) forall R
return TransformParser.new(self, &transform).as(BasicParser(R))
end
def then(other : BasicParser(R)) : BasicParser(Array(T | R)) forall R
return NextParser.new(self, other).as(BasicParser(Array(T | R)))
end
end
class TypeParser < BasicParser(Token)
def initialize(@type : TokenType)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless tokens[index].type == @type
return {tokens[index], index + 1}
end
end
class CharParser < BasicParser(Token)
def initialize(@char : Char)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless (tokens[index].type == TokenType::Any) &&
tokens[index].string[0] == @char
return {tokens[index], index + 1}
end
end
class TransformParser(T, R) < BasicParser(R)
def initialize(@parser : BasicParser(T), &@block : T -> R)
end
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {@block.call(parsed[0]), parsed[1]}
# Attempts to parse the given tokens like `#parse?`, but throws
# on error.
def parse(tokens, index)
return parse?(tokens, index).not_nil!
end
return nil
end
end
class OptionalParser(T) < BasicParser(T?)
def initialize(@parser : BasicParser(T))
end
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {parsed[0], parsed[1]}
# Applies the given transformation to this parser,
# creating a new parser.
def transform(&transform : T -> R) forall R
return TransformParser.new(self, &transform).as(BasicParser(R))
end
return {nil, index}
end
end
class EitherParser(T) < BasicParser(T)
def initialize(@parsers : Array(BasicParser(T)))
# Creates a sequence with the given parser,
# creating a new parser.
def then(other : BasicParser(R)) : BasicParser(Array(T | R)) forall R
return NextParser.new(self, other).as(BasicParser(Array(T | R)))
end
end
def parse?(tokens, index)
@parsers.each do |parser|
if parsed = parser.parse?(tokens, index)
return parsed
# Parser that expects a specific token type.
class TypeParser < BasicParser(Compiler::Token)
def initialize(@type : Compiler::TokenType)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless tokens[index].type == @type
return {tokens[index], index + 1}
end
end
# Parser that expects a specific character.
class CharParser < BasicParser(Compiler::Token)
def initialize(@char : Char)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless (tokens[index].type == Compiler::TokenType::Any) &&
tokens[index].string[0] == @char
return {tokens[index], index + 1}
end
end
# Parser that applies a transformation to the output
# of its child parser.
class TransformParser(T, R) < BasicParser(R)
def initialize(@parser : BasicParser(T), &@block : T -> R)
end
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {@block.call(parsed[0]), parsed[1]}
end
return nil
end
return nil
end
end
class ManyParser(T) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T))
end
def parse?(tokens, index)
many = [] of T
while parsed = @parser.parse?(tokens, index)
item, index = parsed
many << item
end
return {many, index}
end
end
class DelimitedParser(T, R) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T), @delimiter : BasicParser(R))
end
def parse?(tokens, index)
array = [] of T
first = @parser.parse?(tokens, index)
return {array, index} unless first
first_value, index = first
array << first_value
while delimiter = @delimiter.parse?(tokens, index)
_, new_index = delimiter
new = @parser.parse?(tokens, new_index)
break unless new
new_value, index = new
array << new_value
# Parser that attempts to use its child parser,
# and successfully returns nil if the child parser fails.
class OptionalParser(T) < BasicParser(T?)
def initialize(@parser : BasicParser(T))
end
return {array, index}
end
end
class NextParser(T, R) < BasicParser(Array(T | R))
def initialize(@first : BasicParser(T), @second : BasicParser(R))
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {parsed[0], parsed[1]}
end
return {nil, index}
end
end
def parse?(tokens, index)
first = @first.parse?(tokens, index)
return nil unless first
first_value, index = first
# Parser that tries all of its children until one succeeds.
class EitherParser(T) < BasicParser(T)
def initialize(@parsers : Array(BasicParser(T)))
end
second = @second.parse?(tokens, index)
return nil unless second
second_value, index = second
array = Array(T | R).new
array << first_value << second_value
return {array, index}
end
end
class PlaceholderParser(T) < BasicParser(T)
property parser : BasicParser(T)?
def initialize
@parser = nil
def parse?(tokens, index)
@parsers.each do |parser|
if parsed = parser.parse?(tokens, index)
return parsed
end
end
return nil
end
end
def parse?(tokens, index)
@parser.try &.parse?(tokens, index)
# Parser that parses at least one of a given type.
class ManyParser(T) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T))
end
def parse?(tokens, index)
many = [] of T
while parsed = @parser.parse?(tokens, index)
item, index = parsed
many << item
end
return {many, index}
end
end
# Parser that parses at least 0 of its child parser,
# delimited with its other child parser.
class DelimitedParser(T, R) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T), @delimiter : BasicParser(R))
end
def parse?(tokens, index)
array = [] of T
first = @parser.parse?(tokens, index)
return {array, index} unless first
first_value, index = first
array << first_value
while delimiter = @delimiter.parse?(tokens, index)
_, new_index = delimiter
new = @parser.parse?(tokens, new_index)
break unless new
new_value, index = new
array << new_value
end
return {array, index}
end
end
# Parser that parses using the first parser, and, if it succeeds,
# parses using the second parses.
class NextParser(T, R) < BasicParser(Array(T | R))
def initialize(@first : BasicParser(T), @second : BasicParser(R))
end
def parse?(tokens, index)
first = @first.parse?(tokens, index)
return nil unless first
first_value, index = first
second = @second.parse?(tokens, index)
return nil unless second
second_value, index = second
array = Array(T | R).new
array << first_value << second_value
return {array, index}
end
end
# Parser used to declare recursive grammars.
class PlaceholderParser(T) < BasicParser(T)
property parser : BasicParser(T)?
def initialize
@parser = nil
end
def parse?(tokens, index)
@parser.try &.parse?(tokens, index)
end
end
end
end

View File

@ -1,53 +1,55 @@
require "./tree.cr"
module Chalk
class PrintVisitor < Visitor
def initialize(@stream : IO)
@indent = 0
end
def print_indent
@indent.times do
@stream << " "
module Trees
# Visitor that prints a `Tree`.
class PrintVisitor < Visitor
def initialize(@stream : IO)
@indent = 0
end
end
def visit(id : TreeId)
print_indent
@stream << id.id << "\n"
end
def visit(lit : TreeLit)
print_indent
@stream << lit.lit << "\n"
end
def visit(op : TreeOp)
print_indent
@stream << "[op] "
@stream << op.op << "\n"
@indent += 1
end
def finish(op : TreeOp)
@indent -= 1
end
def visit(function : TreeFunction)
print_indent
@stream << "[function] " << function.name << "( "
function.params.each do |param|
@stream << param << " "
private def print_indent
@indent.times do
@stream << " "
end
end
@stream << ")" << "\n"
@indent += 1
end
def finish(function : TreeFunction)
@indent -= 1
end
def visit(id : TreeId)
print_indent
@stream << id.id << "\n"
end
macro forward(text, type)
def visit(lit : TreeLit)
print_indent
@stream << lit.lit << "\n"
end
def visit(op : TreeOp)
print_indent
@stream << "[op] "
@stream << op.op << "\n"
@indent += 1
end
def finish(op : TreeOp)
@indent -= 1
end
def visit(function : TreeFunction)
print_indent
@stream << "[function] " << function.name << "( "
function.params.each do |param|
@stream << param << " "
end
@stream << ")" << "\n"
@indent += 1
end
def finish(function : TreeFunction)
@indent -= 1
end
macro forward(text, type)
def visit(tree : {{type}})
print_indent
@stream << {{text}} << "\n"
@ -59,18 +61,19 @@ module Chalk
end
end
forward("[call]", TreeCall)
forward("[block]", TreeBlock)
forward("[var]", TreeVar)
forward("[assign]", TreeAssign)
forward("[if]", TreeIf)
forward("[while]", TreeWhile)
forward("[return]", TreeReturn)
end
forward("[call]", TreeCall)
forward("[block]", TreeBlock)
forward("[var]", TreeVar)
forward("[assign]", TreeAssign)
forward("[if]", TreeIf)
forward("[while]", TreeWhile)
forward("[return]", TreeReturn)
end
class Tree
def to_s(io)
accept(PrintVisitor.new io)
class Tree
def to_s(io)
accept(PrintVisitor.new io)
end
end
end
end

View File

@ -1,51 +1,68 @@
module Chalk
class Entry
end
class FunctionEntry < Entry
property function : TreeFunction | BuiltinFunction | InlineFunction
property addr : Int32
def initialize(@function, @addr = -1)
module Compiler
# An entry in the symbol table.
class Entry
end
def to_s(io)
io << "[function]"
end
end
# An entry that represents a function in the symbol table.
class FunctionEntry < Entry
# Gets the function stored in this entry.
getter function
# Gets the address in code of this function.
getter addr
# Sets the address in code of this function.
setter addr
class VarEntry < Entry
property register : Int32
def initialize(@register)
end
def to_s(io)
io << "[variable] " << "(R" << @register.to_s(16) << ")"
end
end
class Table
property parent : Table?
def initialize(@parent = nil)
@data = {} of String => Entry
end
def []?(key)
if entry = @data[key]?
return entry
def initialize(@function : Trees::TreeFunction | Builtin::BuiltinFunction | Builtin::InlineFunction,
@addr = -1)
end
def to_s(io)
io << "[function]"
end
return @parent.try &.[key]?
end
def []=(key, entry)
@data[key] = entry
# An entry that represents a variable in the symbol table.
class VarEntry < Entry
# Gets the register occupied by the variable
# in this entry.
getter register
def initialize(@register : Int32)
end
def to_s(io)
io << "[variable] " << "(R" << @register.to_s(16) << ")"
end
end
def to_s(io)
@parent.try &.to_s(io)
io << @data.map { |k, v| k + ": " + v.to_s }.join("\n")
# A symbol table.
class Table
# Gets the parent of this table.
getter parent
def initialize(@parent : Table? = nil)
@data = {} of String => Entry
end
# Looks up the given *key* first in this table,
# then in its parent, continuing recursively.
def []?(key)
if entry = @data[key]?
return entry
end
return @parent.try &.[key]?
end
# Stores an *entry* under the given *key* into this table.
def []=(key, entry)
@data[key] = entry
end
def to_s(io)
@parent.try &.to_s(io)
io << @data.map { |k, v| k + ": " + v.to_s }.join("\n")
end
end
end
end

View File

@ -1,228 +1,248 @@
module Chalk
class Visitor
def visit(tree)
end
def finish(tree)
end
end
class Transformer
def transform(tree)
return tree
end
end
class Tree
def accept(v)
v.visit(self)
v.finish(self)
end
def apply(t)
return t.transform(self)
end
end
class TreeId < Tree
property id : String
def initialize(@id)
end
end
class TreeLit < Tree
property lit : Int64
def initialize(@lit)
end
end
class TreeCall < Tree
property name : String
property params : Array(Tree)
def initialize(@name, @params)
end
def accept(v)
v.visit(self)
@params.each &.accept(v)
v.finish(self)
end
def apply(t)
@params.map! do |param|
param.apply(t)
module Trees
# A class used to visit nodes of a tree.
class Visitor
def visit(tree)
end
return t.transform(self)
end
end
class TreeOp < Tree
property op : TokenType
property left : Tree
property right : Tree
def initialize(@op, @left, @right)
end
def accept(v)
v.visit(self)
@left.accept(v)
@right.accept(v)
v.finish(self)
end
def apply(t)
@left = @left.apply(t)
@right = @right.apply(t)
return t.transform(self)
end
end
class TreeBlock < Tree
property children : Array(Tree)
def initialize(@children)
end
def accept(v)
v.visit(self)
@children.each &.accept(v)
v.finish(self)
end
def apply(t)
@children.map! do |child|
child.apply(t)
def finish(tree)
end
return t.transform(self)
end
end
class TreeFunction < Tree
property name : String
property params : Array(String)
property block : Tree
def initialize(@name, @params, @block)
end
def param_count
return @params.size
# A class used to transform a tree, bottom up.
# "Modern Compiler Design" refers to this technique
# as BURS.
class Transformer
def transform(tree)
return tree
end
end
def accept(v)
v.visit(self)
@block.accept(v)
v.finish(self)
# The base class of a tree.
class Tree
def accept(v)
v.visit(self)
v.finish(self)
end
def apply(t)
return t.transform(self)
end
end
def apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end
# A tree that represents an ID.
class TreeId < Tree
property id : String
class TreeVar < Tree
property name : String
property expr : Tree
def initialize(@name, @expr)
def initialize(@id)
end
end
def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
# A tree that represents an integer literal.
class TreeLit < Tree
property lit : Int64
def initialize(@lit)
end
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end
# A tree that represents a function call.
class TreeCall < Tree
property name : String
property params : Array(Tree)
class TreeAssign < Tree
property name : String
property expr : Tree
def initialize(@name, @params)
end
def initialize(@name, @expr)
def accept(v)
v.visit(self)
@params.each &.accept(v)
v.finish(self)
end
def apply(t)
@params.map! do |param|
param.apply(t)
end
return t.transform(self)
end
end
def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
# A tree that represents an operation on two values.
class TreeOp < Tree
property op : Compiler::TokenType
property left : Tree
property right : Tree
def initialize(@op, @left, @right)
end
def accept(v)
v.visit(self)
@left.accept(v)
@right.accept(v)
v.finish(self)
end
def apply(t)
@left = @left.apply(t)
@right = @right.apply(t)
return t.transform(self)
end
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end
# A tree that represents a block of statements.
class TreeBlock < Tree
property children : Array(Tree)
class TreeIf < Tree
property condition : Tree
property block : Tree
property otherwise : Tree?
def initialize(@children)
end
def initialize(@condition, @block, @otherwise = nil)
def accept(v)
v.visit(self)
@children.each &.accept(v)
v.finish(self)
end
def apply(t)
@children.map! do |child|
child.apply(t)
end
return t.transform(self)
end
end
def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
@otherwise.try &.accept(v)
v.finish(self)
# A tree that represents a function declaration.
class TreeFunction < Tree
property name : String
property params : Array(String)
property block : Tree
def initialize(@name, @params, @block)
end
def param_count
return @params.size
end
def accept(v)
v.visit(self)
@block.accept(v)
v.finish(self)
end
def apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
@otherwise = @otherwise.try &.apply(t)
return t.transform(self)
end
end
# A tree that represents the declaration of
# a new variable.
class TreeVar < Tree
property name : String
property expr : Tree
class TreeWhile < Tree
property condition : Tree
property block : Tree
def initialize(@name, @expr)
end
def initialize(@condition, @block)
def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end
def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
v.finish(self)
# A tree that represents the assignment
# to an existing variable.
class TreeAssign < Tree
property name : String
property expr : Tree
def initialize(@name, @expr)
end
def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end
# A tree that represents an if statement.
class TreeIf < Tree
property condition : Tree
property block : Tree
property otherwise : Tree?
class TreeReturn < Tree
property rvalue : Tree
def initialize(@condition, @block, @otherwise = nil)
end
def initialize(@rvalue)
def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
@otherwise.try &.accept(v)
v.finish(self)
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
@otherwise = @otherwise.try &.apply(t)
return t.transform(self)
end
end
def accept(v)
v.visit(self)
@rvalue.accept(v)
v.finish(self)
# A tree that represents a while loop.
class TreeWhile < Tree
property condition : Tree
property block : Tree
def initialize(@condition, @block)
end
def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
v.finish(self)
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end
def apply(t)
@rvalue = @rvalue.apply(t)
return t.transform(self)
# A tree that represents a return statement.
class TreeReturn < Tree
property rvalue : Tree
def initialize(@rvalue)
end
def accept(v)
v.visit(self)
@rvalue.accept(v)
v.finish(self)
end
def apply(t)
@rvalue = @rvalue.apply(t)
return t.transform(self)
end
end
end
end