Compare commits

...

3 Commits

18 changed files with 1722 additions and 1444 deletions

View File

@ -2,9 +2,9 @@ require "./chalk/*"
require "option_parser" require "option_parser"
module Chalk module Chalk
config = Config.parse! config = Ui::Config.parse!
exit unless config.validate! exit unless config.validate!
compiler = Compiler.new config compiler = Compiler::Compiler.new config
compiler.run compiler.run
end end

View File

@ -1,21 +1,37 @@
module Chalk module Chalk
class BuiltinFunction module Builtin
getter param_count : Int32 # A normal function (i.e., a "call" is generated for it)
# that is provided by chalk's standard library, and therefore
# has predefined output.
abstract class BuiltinFunction
# Gets the number of parameters this function has.
getter param_count : Int32
def initialize(@param_count) # Creates a new function with *param_count* parameters.
def initialize(@param_count)
end
# Uses the given `Compiler::Emitter` to output code.
abstract def generate!(codegen)
end end
def generate!(codegen) # A function to which a call is not generated. This function
end # is copied everywhere a call to it occurs. Besides this, the
end # function also accepts trees rather than register numbers,
# and therefore can accept and manipulate trees.
abstract class InlineFunction
# Gets the number of parameters this function has.
getter param_count : Int32
class InlineFunction # Creates a new function with *param_count* parameters.
getter param_count : Int32 def initialize(@param_count)
end
def initialize(@param_count) # Generates code like `Compiler::CodeGenerator` would.
end # The *codegen* parameter is used to emit instructions,
# the *params* are trees that are being passed as arguments.
def generate!(codegen, params, table, target, free) # See `Compiler::CodeGenerator#generate!` for what the other parameters mean.
abstract def generate!(codegen, params, table, target, free)
end end
end end
end end

View File

@ -2,141 +2,163 @@ require "./ir.cr"
require "./emitter.cr" require "./emitter.cr"
module Chalk module Chalk
class CodeGenerator module Compiler
include Emitter # A class that converts a tree into the corresponding
# intermediate representation, without optimizing.
class CodeGenerator
include Emitter
RETURN_REG = 14 # The register into which the return value of a function is stored.
STACK_REG = 13 RETURN_REG = 14
# The register into which the "stack pointer" is stored.
STACK_REG = 13
property instructions : Array(Instruction) # Gets the instructions currently emitted by this code generator.
getter instructions
def initialize(table, @function : TreeFunction) # Creates a new compiler with the given symbol *table*
@registers = 0 # and *function* for which code should be generated.
@instructions = [] of Instruction def initialize(table, @function : Trees::TreeFunction)
@table = Table.new table @registers = 0
@instructions = [] of Ir::Instruction
@table = Table.new table
@function.params.each do |param| @function.params.each do |param|
@table[param] = VarEntry.new @registers @table[param] = VarEntry.new @registers
@registers += 1 @registers += 1
end
end
def generate!(tree, function : InlineFunction, table, target, free)
function.generate!(self, tree.params, table, target, free)
end
def generate!(tree, function : TreeFunction | BuiltinFunction, table, target, free)
start_at = free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Store variables
store (start_at - 1) unless start_at == 0
# Increment I and stack position
load free, start_at
opr TokenType::OpAdd, STACK_REG, free
addi free
# Calculate the parameters
tree.params.each do |param|
generate! param, table, free, free + 1
free += 1
end
# Call the function
tree.params.size.times do |time|
loadr time, time + start_at
end
call tree.name
# Reduce stack pointer
load free, start_at
opr TokenType::OpSub, STACK_REG, free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Restore
restore (start_at - 1) unless start_at == 0
# Get call value into target
loadr target, RETURN_REG
end
def generate!(tree, table, target, free)
case tree
when TreeId
entry = table[tree.id]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
loadr target, entry.register
when TreeLit
load target, tree.lit
when TreeOp
generate! tree.left, table, target, free
generate! tree.right, table, free, free + 1
opr tree.op, target, free
when TreeCall
entry = table[tree.name]?
raise "Unknown function" unless entry &&
entry.is_a?(FunctionEntry)
function = entry.function
raise "Invalid call" if tree.params.size != function.param_count
generate! tree, function, table, target, free
when TreeBlock
table = Table.new(table)
tree.children.each do |child|
free += generate! child, table, free, free + 1
end end
when TreeVar end
entry = table[tree.name]?
if entry == nil # Generates code for an inline function, with the given *tree* being the `Trees::TreeCall`
entry = VarEntry.new free # that caused the function call. The other parameters are as described in the more general
# `#generate!` call.
def generate!(tree, function : Builtin::InlineFunction, table, target, free)
function.generate!(self, tree.params, table, target, free)
end
# Generates code for a tree or a builtin function (that is, a call is actually necessary).
# I is set to the current stack pointer, the registers are stored, and the call is made.
# The registers are then restored. The other parameters are as described in the more general
# `#generate!` call.
def generate!(tree, function : Trees::TreeFunction | Builtin::BuiltinFunction, table, target, free)
start_at = free
# Move I to stack
setis
# Get to correct stack position
addi STACK_REG
# Store variables
store (start_at - 1) unless start_at == 0
# Increment I and stack position
load free, start_at
opr TokenType::OpAdd, STACK_REG, free
addi free
# Calculate the parameters
tree.params.each do |param|
generate! param, table, free, free + 1
free += 1 free += 1
table[tree.name] = entry
end end
raise "Unknown variable" unless entry.is_a?(VarEntry) # Call the function
generate! tree.expr, table, entry.register, free tree.params.size.times do |time|
return 1 loadr time, time + start_at
when TreeAssign end
entry = table[tree.name]? call tree.name
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
when TreeIf
generate! tree.condition, table, free, free + 1
sne free, 0
jump_inst = jr 0
old_size = @instructions.size # Reduce stack pointer
generate! tree.block, table, free, free + 1 load free, start_at
jump_after = jr 0 opr TokenType::OpSub, STACK_REG, free
jump_inst.offset = @instructions.size - old_size + 1 # Move I to stack
setis
old_size = @instructions.size # Get to correct stack position
generate! tree.otherwise, table, free, free + 1 if tree.otherwise addi STACK_REG
jump_after.offset = @instructions.size - old_size + 1 # Restore
when TreeWhile restore (start_at - 1) unless start_at == 0
before_cond = @instructions.size # Get call value into target
generate! tree.condition, table, free, free + 1 loadr target, RETURN_REG
sne free, 0
cond_jump = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
after_jump = jr 0
cond_jump.offset = @instructions.size - old_size + 1
after_jump.offset = before_cond - instructions.size + 1
when TreeReturn
generate! tree.rvalue, table, RETURN_REG, free
ret
end end
return 0
end
def generate! # Generates code for a *tree*, using a symbol *table*
generate!(@function.block, @table, -1, @registers) # housing all the names for identifiers in the code.
return @instructions # The result is stored into the *target* register,
# and the *free* register is the next register into
# which a value can be stored for "scratch work".
def generate!(tree, table, target, free)
case tree
when Trees::TreeId
entry = table[tree.id]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
loadr target, entry.register
when Trees::TreeLit
load target, tree.lit
when Trees::TreeOp
generate! tree.left, table, target, free
generate! tree.right, table, free, free + 1
opr tree.op, target, free
when Trees::TreeCall
entry = table[tree.name]?
raise "Unknown function" unless entry &&
entry.is_a?(FunctionEntry)
function = entry.function
raise "Invalid call" if tree.params.size != function.param_count
generate! tree, function, table, target, free
when Trees::TreeBlock
table = Table.new(table)
tree.children.each do |child|
free += generate! child, table, free, free + 1
end
when Trees::TreeVar
entry = table[tree.name]?
if entry == nil
entry = VarEntry.new free
free += 1
table[tree.name] = entry
end
raise "Unknown variable" unless entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
return 1
when Trees::TreeAssign
entry = table[tree.name]?
raise "Unknown variable" unless entry &&
entry.is_a?(VarEntry)
generate! tree.expr, table, entry.register, free
when Trees::TreeIf
generate! tree.condition, table, free, free + 1
sne free, 0
jump_inst = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
jump_after = jr 0
jump_inst.offset = @instructions.size - old_size + 1
old_size = @instructions.size
generate! tree.otherwise, table, free, free + 1 if tree.otherwise
jump_after.offset = @instructions.size - old_size + 1
when Trees::TreeWhile
before_cond = @instructions.size
generate! tree.condition, table, free, free + 1
sne free, 0
cond_jump = jr 0
old_size = @instructions.size
generate! tree.block, table, free, free + 1
after_jump = jr 0
cond_jump.offset = @instructions.size - old_size + 1
after_jump.offset = before_cond - instructions.size + 1
when Trees::TreeReturn
generate! tree.rvalue, table, RETURN_REG, free
ret
end
return 0
end
# Generates code for the function that was given to it.
def generate!
generate!(@function.block, @table, -1, @registers)
return @instructions
end
end end
end end
end end

View File

@ -3,161 +3,197 @@ require "./constant_folder.cr"
require "./table.cr" require "./table.cr"
module Chalk module Chalk
class Compiler module Compiler
def initialize(@config : Config) # Top-level class to tie together the various
@logger = Logger.new STDOUT # components, such as the `Lexer`,
@logger.debug("Initialized compiler") # `ParserCombinators::Parser`, and `Optimizer`
@logger.level = Logger::DEBUG class Compiler
end # Creates a new compiler with the given *config*.
def initialize(@config : Ui::Config)
private def create_trees(file) @logger = Logger.new STDOUT
string = File.read(file) @logger.debug("Initialized compiler")
@logger.debug("Tokenizing") @logger.level = Logger::DEBUG
lexer = Lexer.new
tokens = lexer.lex string
if tokens.size == 0 && string != ""
raise "Unable to tokenize file."
end end
@logger.debug("Finished tokenizing")
@logger.debug("Beginning parsing") # Reads a file an extracts instances of
parser = Parser.new # `Trees:TreeFunction`.
if trees = parser.parse?(tokens) private def create_trees(file)
@logger.debug("Finished parsing") string = File.read(file)
@logger.debug("Beginning constant folding") @logger.debug("Tokenizing")
folder = ConstantFolder.new lexer = Lexer.new
trees.map! do |tree| tokens = lexer.lex string
@logger.debug("Constant folding #{tree.name}") if tokens.size == 0 && string != ""
tree.apply(folder).as(TreeFunction) raise "Unable to tokenize file."
end end
@logger.debug("Done constant folding") @logger.debug("Finished tokenizing")
return trees @logger.debug("Beginning parsing")
end parser = ParserCombinators::Parser.new
raise "Unable to parse file." if trees = parser.parse?(tokens)
end @logger.debug("Finished parsing")
@logger.debug("Beginning constant folding")
private def create_table(trees) folder = Trees::ConstantFolder.new
table = Table.new trees.map! do |tree|
@logger.debug("Creating symbol table") @logger.debug("Constant folding #{tree.name}")
trees.each do |tree| tree.apply(folder).as(Trees::TreeFunction)
@logger.debug("Storing #{tree.name} in symbol table") end
table[tree.name] = FunctionEntry.new tree @logger.debug("Done constant folding")
end return trees
@logger.debug("Done creating symbol table") end
raise "Unable to parse file."
table["draw"] = FunctionEntry.new InlineDrawFunction.new
table["get_key"] = FunctionEntry.new InlineAwaitKeyFunction.new
table["get_font"] = FunctionEntry.new InlineGetFontFunction.new
table["set_delay"] = FunctionEntry.new InlineSetDelayFunction.new
table["get_delay"] = FunctionEntry.new InlineGetDelayFunction.new
return table
end
private def create_code(tree : TreeFunction, table)
generator = CodeGenerator.new table, tree
@logger.debug("Generating code for #{tree.name}")
return generator.generate!
end
private def create_code(tree : BuiltinFunction, table)
instructions = [] of Instruction
tree.generate!(instructions)
return instructions
end
private def create_code(trees : Array(TreeFunction), table)
code = {} of String => Array(Instruction)
trees.each do |tree|
code[tree.name] = create_code(tree, table)
end
return code
end
private def run_tree
trees = create_trees(@config.file)
trees.each do |it|
STDOUT << it
end
end
private def run_intermediate
trees = create_trees(@config.file)
table = create_table(trees)
code = create_code(trees, table)
code.each do |name, insts|
puts "Code for #{name}:"
insts.each { |it| puts it }
puts "-----"
end
end
private def generate_binary(table, instructions, dest)
context = InstructionContext.new table, instructions.size
binary = instructions.map_with_index { |it, i| it.to_bin(context, i).to_u16 }
binary.each do |inst|
first = (inst >> 8).to_u8
dest.write_byte(first)
second = (inst & 0xff).to_u8
dest.write_byte(second)
end
end
private def collect_calls(table)
open = Set(String).new
done = Set(String).new
open << "main"
while !open.empty?
first = open.first
open.delete first
entry = table[first]?
raise "Unknown function" unless entry && entry.is_a?(FunctionEntry)
function = entry.function
next if function.is_a?(InlineFunction)
done << first
next unless function.is_a?(TreeFunction)
visitor = CallVisitor.new
function.accept(visitor)
open.concat(visitor.calls - done)
end
return done
end
private def run_binary
all_instructions = [] of Instruction
trees = create_trees(@config.file)
table = create_table(trees)
names = collect_calls(table)
names.delete "main"
main_entry = table["main"]?.as(FunctionEntry)
all_instructions.concat create_code(main_entry.function.as(TreeFunction), table)
main_entry.addr = 0
all_instructions << JumpRelativeInstruction.new 0
names.each do |name|
entry = table[name]?.as(FunctionEntry)
entry.addr = all_instructions.size
function = entry.function
raise "Trying to compile inlined function" if function.is_a?(InlineFunction)
all_instructions.concat create_code(function, table)
all_instructions << ReturnInstruction.new
end end
file = File.open("out.ch8", "w") # Creates a default symbol table using the default functions,
generate_binary(table, all_instructions, file) # as well as the functions declared by *trees*
file.close private def create_table(trees)
end table = Table.new
@logger.debug("Creating symbol table")
trees.each do |tree|
@logger.debug("Storing #{tree.name} in symbol table")
table[tree.name] = FunctionEntry.new tree
end
@logger.debug("Done creating symbol table")
def run table["draw"] = FunctionEntry.new Builtin::InlineDrawFunction.new
case @config.mode table["get_key"] = FunctionEntry.new Builtin::InlineAwaitKeyFunction.new
when OutputMode::Tree table["get_font"] = FunctionEntry.new Builtin::InlineGetFontFunction.new
run_tree table["set_delay"] = FunctionEntry.new Builtin::InlineSetDelayFunction.new
when OutputMode::Intermediate table["get_delay"] = FunctionEntry.new Builtin::InlineGetDelayFunction.new
run_intermediate return table
when OutputMode::Binary end
run_binary
# Generates and optimizes intermediate representation for the given *tree*,
# looking up identifiers in the symbol *table*, and appending the given *instruction*
# at the end of the function to ensure correct program flow.
private def create_code(tree : Trees::TreeFunction, table, instruction = Ir::ReturnInstruction.new)
optimizer = Optimizer.new
generator = CodeGenerator.new table, tree
@logger.debug("Generating code for #{tree.name}")
code = generator.generate!
code << instruction
return optimizer.optimize(code)
end
# Generate code for a builtin function. Neither the *table* nor the *instruction*
# are used, and serve to allow function overloading.
private def create_code(function : Builtin::BuiltinFunction, table, instruction = nil)
instructions = [] of Ir::Instruction
function.generate!(instructions)
return instructions
end
# Creates a hash containing function names and their generated code.
# Only functions parsed from the file are compiled, and the *table*
# is used for looking up identifiers.
private def create_code(trees : Array(Trees::TreeFunction), table)
code = {} of String => Array(Ir::Instruction)
trees.each do |tree|
code[tree.name] = create_code(tree, table)
end
return code
end
# Runs in the tree `Ui::OutputMode`. The file is
# tokenized and parsed, and the result is printed
# to the standard output.
private def run_tree
trees = create_trees(@config.file)
trees.each do |it|
STDOUT << it
end
end
# Runs in the intermediate `Ui::OutputMode`. The file
# is tokenized and parsed, and for each function,
# intermediate representation is generated. However,
# an executable is not generated, and the IR
# is printed to the screen.
private def run_intermediate
trees = create_trees(@config.file)
table = create_table(trees)
code = create_code(trees, table)
code.each do |name, insts|
puts "Code for #{name}:"
insts.each { |it| puts it }
puts "-----"
end
end
# Creates binary from the given *instructions*,
# using the symbol *table* for lookups, and writes
# the output to *dest*
private def generate_binary(table, instructions, dest)
binary = instructions.map_with_index { |it, i| it.to_bin(table, instructions.size, i).to_u16 }
binary.each do |inst|
first = (inst >> 8).to_u8
dest.write_byte(first)
second = (inst & 0xff).to_u8
dest.write_byte(second)
end
end
# Find all calls performed by the functions
# stored in the *table*, starting at the main function.
private def collect_calls(table)
open = Set(String).new
done = Set(String).new
open << "main"
while !open.empty?
first = open.first
open.delete first
entry = table[first]?
raise "Unknown function" unless entry && entry.is_a?(FunctionEntry)
function = entry.function
next if function.is_a?(Builtin::InlineFunction)
done << first
next unless function.is_a?(Trees::TreeFunction)
visitor = Trees::CallVisitor.new
function.accept(visitor)
open.concat(visitor.calls - done)
end
return done
end
# Runs in the binary `Ui::OutputMode`. The file is
# converted into an executable.
private def run_binary
all_instructions = [] of Ir::Instruction
trees = create_trees(@config.file)
table = create_table(trees)
names = collect_calls(table)
names.delete "main"
main_entry = table["main"]?.as(FunctionEntry)
all_instructions.concat create_code(main_entry.function.as(Trees::TreeFunction),
table, Ir::JumpRelativeInstruction.new 0)
main_entry.addr = 0
names.each do |name|
entry = table[name]?.as(FunctionEntry)
entry.addr = all_instructions.size
function = entry.function
raise "Trying to compile inlined function" if function.is_a?(Builtin::InlineFunction)
all_instructions.concat create_code(function, table)
all_instructions << Ir::ReturnInstruction.new
end
file = File.open("out.ch8", "w")
generate_binary(table, all_instructions, file)
file.close
end
# Runs the compiler.
def run
case @config.mode
when Ui::OutputMode::Tree
run_tree
when Ui::OutputMode::Intermediate
run_intermediate
when Ui::OutputMode::Binary
run_binary
end
end end
end end
end end

View File

@ -1,51 +1,70 @@
module Chalk module Chalk
enum OutputMode module Ui
Tree, # The mode in which the compiler operates.
Intermediate, # Defines what actions are and aren't performed.
Binary enum OutputMode
end # The text is only parsed, and the result is printed to the screen.
Tree,
class Config # The text is parsed and converted to intermediate representation.
property file : String # The intermediate representation is then printed to the screen.
property mode : OutputMode Intermediate,
# The text is converted into a full CHIP-8 executable.
def initialize(@file = "", Binary
@mode = OutputMode::Tree)
end end
def self.parse! # A configuration class created from the command-line parameters.
config = self.new class Config
OptionParser.parse! do |parser| # Gets the file to be compiled.
parser.banner = "Usage: chalk [arguments]" getter file : String
parser.on("-m", "--mode=MODE", "Set the mode of the compiler.") do |mode| # Sets the file to be compiled.
case mode.downcase setter file : String
when "tree", "t" # Gets the mode in which the compiler should operate.
config.mode = OutputMode::Tree getter mode : OutputMode
when "intermediate", "i" # Sets the mode in which the compiler should operate.
config.mode = OutputMode::Intermediate setter mode : OutputMode
when "binary", "b"
config.mode = OutputMode::Binary # Creates a new configuration.
else def initialize(@file = "",
puts "Invalid mode type. Using default." @mode = OutputMode::Tree)
end
# Reads a configuration from the command line options.
def self.parse!
config = self.new
OptionParser.parse! do |parser|
parser.banner = "Usage: chalk [arguments]"
parser.on("-m", "--mode=MODE", "Set the mode of the compiler.") do |mode|
case mode.downcase
when "tree", "t"
config.mode = OutputMode::Tree
when "intermediate", "i"
config.mode = OutputMode::Intermediate
when "binary", "b"
config.mode = OutputMode::Binary
else
puts "Invalid mode type. Using default."
end
end end
parser.on("-f", "--file=FILE", "Set the input file to compile.") do |file|
config.file = file
end
parser.on("-h", "--help", "Show this message.") { puts parser }
end end
parser.on("-f", "--file=FILE", "Set the input file to compile.") do |file| return config
config.file = file
end
parser.on("-h", "--help", "Show this message.") { puts parser }
end end
return config
end
def validate! # Validates the options provided, returning true if
if file == "" # they are valid and false otherwise.
puts "No source file specified." def validate!
return false if file == ""
elsif !File.exists? file puts "No source file specified."
puts "Unable to open source file." return false
return false elsif !File.exists? file
puts "Unable to open source file."
return false
end
return true
end end
return true
end end
end end
end end

View File

@ -1,33 +1,37 @@
require "./tree.cr" require "./tree.cr"
module Chalk module Chalk
class ConstantFolder < Transformer module Trees
private def perform_op(op, left, right) # `Trees::Transformer` that turns operations on
case op # Constants into constants.
when TokenType::OpAdd class ConstantFolder < Transformer
left + right private def perform_op(op, left, right)
when TokenType::OpSub case op
left - right when Compiler::TokenType::OpAdd
when TokenType::OpMul left + right
left*right when Compiler::TokenType::OpSub
when TokenType::OpDiv left - right
left/right when Compiler::TokenType::OpMul
when TokenType::OpAnd left*right
left & right when Compiler::TokenType::OpDiv
when TokenType::OpOr left/right
left | right when Compiler::TokenType::OpAnd
else TokenType::OpXor left & right
left ^ right when Compiler::TokenType::OpOr
left | right
else Compiler::TokenType::OpXor
left ^ right
end
end end
end
def transform(tree : TreeOp) def transform(tree : Trees::TreeOp)
if tree.left.is_a?(TreeLit) && tree.right.is_a?(TreeLit) if tree.left.is_a?(Trees::TreeLit) && tree.right.is_a?(Trees::TreeLit)
return TreeLit.new perform_op(tree.op, return Trees::TreeLit.new perform_op(tree.op,
tree.left.as(TreeLit).lit, tree.left.as(Trees::TreeLit).lit,
tree.right.as(TreeLit).lit) tree.right.as(Trees::TreeLit).lit)
end
return tree
end end
return tree
end end
end end
end end

View File

@ -1,75 +1,111 @@
module Chalk module Chalk
module Emitter module Compiler
def load(into, value) # Module to emit instructions and store
inst = LoadInstruction.new into, value.to_i32 # them into an existing array.
@instructions << inst module Emitter
return inst # Emits an instruction to load a *value* into a register, *into*.
end def load(into, value)
inst = Ir::LoadInstruction.new into, value.to_i32
@instructions << inst
return inst
end
def loadr(into, from) # Emits an instruction to load a register, *from*, into
inst = LoadRegInstruction.new into, from # another register, *into*
@instructions << inst def loadr(into, from)
return inst inst = Ir::LoadRegInstruction.new into, from
end @instructions << inst
return inst
end
def op(op, into, from) # Emits an instruction that's converted
inst = OpInstruction.new op, into, from # to an operation, *op* that mutates the register, *into*,
@instructions << inst # with the right hand operand *from*
return inst def op(op, into, from)
end inst = Ir::OpInstruction.new op, into, from
@instructions << inst
return inst
end
def opr(op, into, from) # Emits an instruction that's converted
inst = OpRegInstruction.new op, into, from # to an operation, *op*, that mutates the register, *into*,
@instructions << inst # with the right hand operand (a register), *from*
return inst def opr(op, into, from)
end inst = Ir::OpRegInstruction.new op, into, from
@instructions << inst
return inst
end
def sne(l, r) # Emits a "skip next instruction if not equal"
inst = SkipNeInstruction.new l, r # instruction. The left hand side is a register,
@instructions << inst # an the right hand side is a value.
return inst def sne(l, r)
end inst = Ir::SkipNeInstruction.new l, r
@instructions << inst
return inst
end
def jr(o) # Emits an instruction to jump relative to
inst = JumpRelativeInstruction.new o # where the instruction is.
@instructions << inst # ```
return inst # jr 0 # Infinite loop
end # jr -1 # Run previous instruction
# jr 1 # pretty much a no-op.
# ```
def jr(o)
inst = Ir::JumpRelativeInstruction.new o
@instructions << inst
return inst
end
def store(up_to) # Emits instruction that stores register 0 through *up_to* into
inst = StoreInstruction.new up_to # memory at address I.
@instructions << inst def store(up_to)
return inst inst = Ir::StoreInstruction.new up_to
end @instructions << inst
return inst
end
def restore(up_to) # Emits instruction that loads values from address I into
inst = RestoreInstruction.new up_to # register 0 through *up_t*
@instructions << inst def restore(up_to)
return inst inst = Ir::RestoreInstruction.new up_to
end @instructions << inst
return inst
end
def ret # Emits a return instruction.
inst = ReturnInstruction.new def ret
@instructions << inst inst = Ir::ReturnInstruction.new
return inst @instructions << inst
end return inst
end
def call(func) # Emits an instruction to call
inst = CallInstruction.new func # the given function name.
@instructions << inst def call(func)
return inst inst = Ir::CallInstruction.new func
end @instructions << inst
return inst
end
def setis # Emits instruction to set I
inst = SetIStackInstruction.new # to the baste stack location. The stack
@instructions << inst # pointer will need to be added to I
return inst # to get the next available stack slot.
end def setis
inst = Ir::SetIStackInstruction.new
@instructions << inst
return inst
end
def addi(reg) # Emits instruction to add the value of a
inst = AddIRegInstruction.new reg # register to I
@instructions << inst def addi(reg)
return inst inst = Ir::AddIRegInstruction.new reg
@instructions << inst
return inst
end
end end
end end
end end

View File

@ -1,13 +1,16 @@
module Chalk module Chalk
class CallVisitor < Visitor module Trees
property calls : Set(String) # Visitor that finds all function calls in a function.
class CallVisitor < Visitor
property calls : Set(String)
def initialize def initialize
@calls = Set(String).new @calls = Set(String).new
end end
def visit(t : TreeCall) def visit(t : TreeCall)
@calls << t.name @calls << t.name
end
end end
end end
end end

View File

@ -1,58 +1,65 @@
module Chalk module Chalk
class InlineDrawFunction < InlineFunction module Builtin
def initialize # Inline function to draw sprite at address I.
@param_count = 3 class InlineDrawFunction < InlineFunction
end def initialize
@param_count = 3
def generate!(emitter, params, table, target, free)
if !params[2].is_a?(TreeLit)
raise "Third parameter must be a constant."
end end
emitter.generate! params[0], table, free, free + 1
emitter.generate! params[1], table, free + 1, free + 2
emitter.instructions << DrawInstruction.new free, free + 1, params[2].as(TreeLit).lit.to_i32
end
end
class InlineAwaitKeyFunction < InlineFunction def generate!(emitter, params, table, target, free)
def initialize if !params[2].is_a?(Trees::TreeLit)
@param_count = 0 raise "Third parameter must be a constant."
end
emitter.generate! params[0], table, free, free + 1
emitter.generate! params[1], table, free + 1, free + 2
emitter.instructions << Ir::DrawInstruction.new free, free + 1, params[2].as(Trees::TreeLit).lit.to_i32
end
end end
def generate!(emitter, params, table, target, free) # Inline function to await for a key and return it.
emitter.instructions << AwaitKeyInstruction.new target class InlineAwaitKeyFunction < InlineFunction
end def initialize
end @param_count = 0
end
class InlineGetFontFunction < InlineFunction def generate!(emitter, params, table, target, free)
def initialize emitter.instructions << Ir::AwaitKeyInstruction.new target
@param_count = 1 end
end end
def generate!(emitter, params, table, target, free) # Inline function to get font for a given value.
emitter.generate! params[0], table, free, free + 1 class InlineGetFontFunction < InlineFunction
emitter.instructions << GetFontInstruction.new free def initialize
end @param_count = 1
end end
class InlineSetDelayFunction < InlineFunction def generate!(emitter, params, table, target, free)
def initialize emitter.generate! params[0], table, free, free + 1
@param_count = 1 emitter.instructions << Ir::GetFontInstruction.new free
end
end end
def generate!(emitter, params, table, target, free) # Inline function to set the delay timer.
emitter.generate! params[0], table, free, free + 1 class InlineSetDelayFunction < InlineFunction
emitter.instructions << SetDelayTimerInstruction.new free def initialize
end @param_count = 1
end end
class InlineGetDelayFunction < InlineFunction def generate!(emitter, params, table, target, free)
def initialize emitter.generate! params[0], table, free, free + 1
@param_count = 0 emitter.instructions << Ir::SetDelayTimerInstruction.new free
end
end end
def generate!(emitter, params, table, target, free) # Inline function to get the delay timer.
emitter.instructions << GetDelayTimerInstruction.new target class InlineGetDelayFunction < InlineFunction
def initialize
@param_count = 0
end
def generate!(emitter, params, table, target, free)
emitter.instructions << Ir::GetDelayTimerInstruction.new target
end
end end
end end
end end

View File

@ -1,373 +1,371 @@
require "./lexer.cr" require "./lexer.cr"
module Chalk module Chalk
class Instruction module Ir
def to_bin(i, index) # Base instruction class.
return 0 class Instruction
end # Converts the instruction to binary, using
end # A table for symbol lookups, the stack position,
# and the inex of the instruction.
class InstructionContext def to_bin(table, stack, index)
property table : Table return 0
property stack : Int32
def initialize(@table, @stack)
end
end
class LoadInstruction < Instruction
property register : Int32
property value : Int32
def initialize(@register, @value)
end
def to_s(io)
io << "load R"
@register.to_s(16, io)
io << " " << @value
end
def to_bin(i, index)
0x6000 | (@register << 8) | @value
end
end
class LoadRegInstruction < Instruction
property into : Int32
property from : Int32
def initialize(@into, @from)
end
def to_s(io)
io << "loadr R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(i, index)
0x8000 | (@into << 8) | (@from << 4)
end
end
class OpInstruction < Instruction
property op : TokenType
property into : Int32
property value : Int32
def initialize(@op, @into, @value)
end
def to_s(io)
io << "op " << op << " R"
@into.to_s(16, io)
io << " " << @value
end
def to_bin(i, index)
case op
when TokenType::OpAdd
return 0x7000 | (@into << 8) | @value
else
raise "Invalid instruction"
end end
end end
end
class OpRegInstruction < Instruction # Instruction to load a value into a register.
property op : TokenType class LoadInstruction < Instruction
property into : Int32 def initialize(@register : Int32, @value : Int32)
property from : Int32
def initialize(@op, @into, @from)
end
def to_s(io)
io << "opr " << op << " R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(i, index)
code = 0
case op
when TokenType::OpAdd
code = 4
when TokenType::OpSub
code = 5
when TokenType::OpOr
code = 1
when TokenType::OpAnd
code = 2
when TokenType::OpXor
code = 3
else
raise "Invalid instruction"
end end
return 0x8000 | (@into << 8) | (@from << 4) | code
end
end
class StoreInstruction < Instruction def to_s(io)
property up_to : Int32 io << "load R"
@register.to_s(16, io)
io << " " << @value
end
def initialize(@up_to) def to_bin(table, stack, index)
0x6000 | (@register << 8) | @value
end
end end
def to_s(io) # Instruction to load a register into another register.
io << "store R" class LoadRegInstruction < Instruction
@up_to.to_s(16, io) # Gets the register being written to.
getter into
# Gets the register being used as right-hand operand.
getter from
def initialize(@into : Int32, @from : Int32)
end
def to_s(io)
io << "loadr R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
0x8000 | (@into << 8) | (@from << 4)
end
end end
def to_bin(i, index) # Instruction to perform an operation on a register and a value,
return 0xf055 | (@up_to << 8) # storing the output back into the register.
end class OpInstruction < Instruction
end def initialize(@op : Compiler::TokenType, @into : Int32, @value : Int32)
end
class RestoreInstruction < Instruction def to_s(io)
property up_to : Int32 io << "op " << @op << " R"
@into.to_s(16, io)
io << " " << @value
end
def initialize(@up_to) def to_bin(table, stack, index)
case @op
when Compiler::TokenType::OpAdd
return 0x7000 | (@into << 8) | @value
else
raise "Invalid instruction"
end
end
end end
def to_s(io) # Instruction to perform an operation on a register and another register,
io << "restore R" # storing the output back into left hand register.
@up_to.to_s(16, io) class OpRegInstruction < Instruction
def initialize(@op : Compiler::TokenType, @into : Int32, @from : Int32)
end
def to_s(io)
io << "opr " << @op << " R"
@into.to_s(16, io)
io << " R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
code = 0
case @op
when Compiler::TokenType::OpAdd
code = 4
when Compiler::TokenType::OpSub
code = 5
when Compiler::TokenType::OpOr
code = 1
when Compiler::TokenType::OpAnd
code = 2
when Compiler::TokenType::OpXor
code = 3
else
raise "Invalid instruction"
end
return 0x8000 | (@into << 8) | (@from << 4) | code
end
end end
def to_bin(i, index) # Instruction to write registers to memory at address I.
return 0xf065 | (@up_to << 8) # The *up_to* parameter specifies the highest register
end # that should be stored.
end class StoreInstruction < Instruction
def initialize(@up_to : Int32)
end
class ReturnInstruction < Instruction def to_s(io)
def initialize io << "store R"
@up_to.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf055 | (@up_to << 8)
end
end end
def to_s(io) # Instruction to read registers from memory at address I.
io << "return" # The *up_to* parameter specifies the highest register
# that should be read into.
class RestoreInstruction < Instruction
def initialize(@up_to : Int32)
end
def to_s(io)
io << "restore R"
@up_to.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf065 | (@up_to << 8)
end
end end
def to_bin(i, index) # Instruction to return from a call.
return 0x00ee class ReturnInstruction < Instruction
end def initialize
end end
class JumpRelativeInstruction < Instruction def to_s(io)
property offset : Int32 io << "return"
end
def initialize(@offset) def to_bin(table, stack, index)
return 0x00ee
end
end end
def to_s(io) # Instruction to jump relative to its own position.
io << "jr " << @offset class JumpRelativeInstruction < Instruction
# Gets the offset of this instruction.
getter offset
# Sets the offset of this instruction
setter offset
def initialize(@offset : Int32)
end
def to_s(io)
io << "jr " << @offset
end
def to_bin(table, stack, index)
return 0x1000 | ((@offset + index) * 2 + 0x200)
end
end end
def to_bin(i, index) # Instruction to skip the next instruction if
return 0x1000 | ((@offset + index) * 2 + 0x200) # the left-hand register is equal to the right-hand value.
end class SkipEqInstruction < Instruction
end def initialize(@left : Int32, @right : Int32)
end
class SkipEqInstruction < Instruction def to_s(io)
property left : Int32 io << "seq R"
property right : Int32 @left.to_s(16, io)
io << " " << @right
end
def initialize(@left, @right) def to_bin(table, stack, index)
return 0x3000 | (@left << 8) | @right
end
end end
def to_s(io) # Instruction to skip the next instruction if
io << "seq R" # the left-hand register is not equal to the right-hand value.
@left.to_s(16, io) class SkipNeInstruction < Instruction
io << " " << right def initialize(@left : Int32, @right : Int32)
end
def to_s(io)
io << "sne R"
@left.to_s(16, io)
io << " " << @right
end
def to_bin(table, stack, index)
return 0x4000 | (@left << 8) | @right
end
end end
def to_bin(i, index) # Instruction to skip the next instruction if
return 0x3000 | (@left << 8) | @right # the left-hand register is equal to the right-hand register.
end class SkipRegEqInstruction < Instruction
end def initialize(@left : Int32, @right : Int32)
end
class SkipNeInstruction < Instruction def to_s(io)
property left : Int32 io << "seqr R"
property right : Int32 @left.to_s(16, io)
io << " R"
@right.to_s(16, io)
end
def initialize(@left, @right) def to_bin(table, stack, index)
return 0x5000 | (@left << 8) | (@right << 4)
end
end end
def to_s(io) # Instruction to skip the next instruction if
io << "sne R" # the left-hand register is not equal to the right-hand register.
@left.to_s(16, io) class SkipRegNeInstruction < Instruction
io << " " << right def initialize(@left : Int32, @right : Int32)
end
def to_s(io)
io << "sner R"
@left.to_s(16, io)
io << " R"
@right.to_s(16, io)
end
def to_bin(table, stack, index)
return 0x9000 | (@left << 8) | (@right << 4)
end
end end
def to_bin(i, index) # Instruction to call a function by name.
return 0x4000 | (@left << 8) | @right class CallInstruction < Instruction
end # Gets the name of the function being called.
end getter name
class SkipRegEqInstruction < Instruction def initialize(@name : String)
property left : Int32 end
property right : Int32
def initialize(@left, @right) def to_s(io)
io << "call " << @name
end
def to_bin(table, stack, index)
return 0x2000 | (table[name]?.as(Compiler::FunctionEntry).addr * 2 + 0x200)
end
end end
def to_s(io) # Instruction to set I to the base position of the stack.
io << "seqr R" class SetIStackInstruction < Instruction
@left.to_s(16, io) def to_s(io)
io << " R" io << "setis"
@right.to_s(16, io) end
def to_bin(table, stack, index)
return 0xa000 | (stack * 2 + 0x200)
end
end end
def to_bin(i, index) # Instruction to add a register to I.
return 0x5000 | (@left << 8) | (@right << 4) class AddIRegInstruction < Instruction
end def initialize(@reg : Int32)
end end
class SkipRegNeInstruction < Instruction def to_s(io)
property left : Int32 io << "addi R"
property right : Int32 @reg.to_s(16, io)
end
def initialize(@left, @right) def to_bin(table, stack, index)
return 0xf000 | (@reg << 8) | 0x1e
end
end end
def to_s(io) # Instruction to draw on screen.
io << "sner R" # The x and y coordinates specify the position of the sprite,
@left.to_s(16, io) # and the height gives the height of the sprite.
io << " R" class DrawInstruction < Instruction
@right.to_s(16, io) def initialize(@x : Int32, @y : Int32, @height : Int32)
end
def to_s(io)
io << "draw R"
@x.to_s(16, io)
io << " R"
@y.to_s(16, io)
io << " " << @height
end
def to_bin(table, stack, index)
return 0xd000 | (@x << 8) | (@y << 4) | @height
end
end end
def to_bin(i, index) # Instruction to await a key press and store it into a register.
return 0x9000 | (@left << 8) | (@right << 4) class AwaitKeyInstruction < Instruction
end def initialize(@into : Int32)
end end
class CallInstruction < Instruction def to_s(io)
property name : String io << "getk R"
@into.to_s(16, io)
end
def initialize(@name) def to_bin(table, stack, index)
return 0xf00a | (@into << 8)
end
end end
def to_s(io) # Instruction to set I to the font given by the value
io << "call " << @name # of a register.
class GetFontInstruction < Instruction
def initialize(@from : Int32)
end
def to_s(io)
io << "font R"
@from.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf029 | (@from << 8)
end
end end
def to_bin(i, index) # Instruction to set the delay timer to the value
return 0x2000 | (i.table[name]?.as(FunctionEntry).addr * 2 + 0x200) # of the given register.
end class SetDelayTimerInstruction < Instruction
end def initialize(@from : Int32)
end
class SetIStackInstruction < Instruction def to_s(io)
def to_s(io) io << "set_delay R"
io << "setis" @from.to_s(16, io)
end
def to_bin(table, stack, index)
return 0xf015 | (@from << 8)
end
end end
def to_bin(i, index) # Instruction to get the delay timer, and store
return 0xa000 | (i.stack * 2 + 0x200) # the value into the given register.
end class GetDelayTimerInstruction < Instruction
end def initialize(@into : Int32)
end
class AddIRegInstruction < Instruction def to_s(io)
property reg : Int32 io << "get_delay R"
@into.to_s(16, io)
end
def initialize(@reg) def to_bin(table, stack, index)
end return 0xf007 | (@into << 8)
end
def to_s(io)
io << "addi R"
reg.to_s(16, io)
end
def to_bin(i, index)
return 0xf000 | (@reg << 8) | 0x1e
end
end
class DrawInstruction < Instruction
property x : Int32
property y : Int32
property height : Int32
def initialize(@x, @y, @height)
end
def to_s(io)
io << "draw R"
x.to_s(16, io)
io << " R"
y.to_s(16, io)
io << " " << height
end
def to_bin(i, index)
return 0xd000 | (@x << 8) | (@y << 4) | height
end
end
class AwaitKeyInstruction < Instruction
property into : Int32
def initialize(@into)
end
def to_s(io)
io << "getk R"
@into.to_s(16, io)
end
def to_bin(i, index)
return 0xf00a | (@into << 8)
end
end
class GetFontInstruction < Instruction
property from : Int32
def initialize(@from)
end
def to_s(io)
io << "font R"
@from.to_s(16, io)
end
def to_bin(i, index)
return 0xf029 | (@from << 8)
end
end
class SetDelayTimerInstruction < Instruction
property from : Int32
def initialize(@from)
end
def to_s(io)
io << "set_delay R"
@from.to_s(16, io)
end
def to_bin(i, index)
return 0xf015 | (@from << 8)
end
end
class GetDelayTimerInstruction < Instruction
property into : Int32
def initialize(@into)
end
def to_s(io)
io << "get_delay R"
@into.to_s(16, io)
end
def to_bin(i, index)
return 0xf007 | (@into << 8)
end end
end end
end end

View File

@ -1,82 +1,93 @@
require "lex" require "lex"
module Chalk module Chalk
enum TokenType module Compiler
Any, # The type of a token that can be lexed.
Str, enum TokenType
Id, Any,
LitDec, Str,
LitBin, Id,
LitHex, LitDec,
OpAdd LitBin,
OpSub LitHex,
OpMul OpAdd
OpDiv OpSub
OpOr OpMul
OpAnd OpDiv
OpXor OpOr
KwSprite OpAnd
KwInline OpXor
KwFun KwSprite
KwU0 KwInline
KwU8 KwFun
KwU12 KwU0
KwVar KwU8
KwIf KwU12
KwElse KwVar
KwWhile KwIf
KwReturn KwElse
end KwWhile
KwReturn
class Token
def initialize(@string : String, @type : TokenType)
end end
getter string : String # A class that stores the string it matched and its token type.
getter type : TokenType class Token
end def initialize(@string : String, @type : TokenType)
end
class Lexer # Gets the string this token represents.
def initialize getter string : String
@lexer = Lex::Lexer.new # Gets the type of this token.
@lexer.add_pattern(".", TokenType::Any.value) getter type : TokenType
@lexer.add_pattern("\"(\\\\\"|[^\"])*\"",
TokenType::Str.value)
@lexer.add_pattern("[a-zA-Z_][a-zA-Z_0-9]*",
TokenType::Id.value)
@lexer.add_pattern("[0-9]+",
TokenType::LitDec.value)
@lexer.add_pattern("0b[0-1]+",
TokenType::LitBin.value)
@lexer.add_pattern("0x[0-9a-fA-F]+",
TokenType::LitHex.value)
@lexer.add_pattern("\\+", TokenType::OpAdd.value)
@lexer.add_pattern("-", TokenType::OpSub.value)
@lexer.add_pattern("\\*", TokenType::OpMul.value)
@lexer.add_pattern("/", TokenType::OpDiv.value)
@lexer.add_pattern("&", TokenType::OpAdd.value)
@lexer.add_pattern("\\|", TokenType::OpOr.value)
@lexer.add_pattern("^", TokenType::OpXor.value)
@lexer.add_pattern("sprite", TokenType::KwSprite.value)
@lexer.add_pattern("inline", TokenType::KwInline.value)
@lexer.add_pattern("fun", TokenType::KwFun.value)
@lexer.add_pattern("u0", TokenType::KwU0.value)
@lexer.add_pattern("u8", TokenType::KwU8.value)
@lexer.add_pattern("u12", TokenType::KwU12.value)
@lexer.add_pattern("var", TokenType::KwVar.value)
@lexer.add_pattern("if", TokenType::KwIf.value)
@lexer.add_pattern("else", TokenType::KwElse.value)
@lexer.add_pattern("while", TokenType::KwWhile.value)
@lexer.add_pattern("return", TokenType::KwReturn.value)
end end
def lex(string) # Creates a new Lexer with default token values.
return @lexer.lex(string) # The lexer is backed by liblex. When a string is
.select { |t| !t[0][0].whitespace? } # matched by several tokens, the longest match is chosen
.map do |tuple| # first, followed by the match with the highest enum value.
string, id = tuple class Lexer
Token.new(string, TokenType.new(id)) def initialize
end @lexer = Lex::Lexer.new
@lexer.add_pattern(".", TokenType::Any.value)
@lexer.add_pattern("\"(\\\\\"|[^\"])*\"",
TokenType::Str.value)
@lexer.add_pattern("[a-zA-Z_][a-zA-Z_0-9]*",
TokenType::Id.value)
@lexer.add_pattern("[0-9]+",
TokenType::LitDec.value)
@lexer.add_pattern("0b[0-1]+",
TokenType::LitBin.value)
@lexer.add_pattern("0x[0-9a-fA-F]+",
TokenType::LitHex.value)
@lexer.add_pattern("\\+", TokenType::OpAdd.value)
@lexer.add_pattern("-", TokenType::OpSub.value)
@lexer.add_pattern("\\*", TokenType::OpMul.value)
@lexer.add_pattern("/", TokenType::OpDiv.value)
@lexer.add_pattern("&", TokenType::OpAdd.value)
@lexer.add_pattern("\\|", TokenType::OpOr.value)
@lexer.add_pattern("^", TokenType::OpXor.value)
@lexer.add_pattern("sprite", TokenType::KwSprite.value)
@lexer.add_pattern("inline", TokenType::KwInline.value)
@lexer.add_pattern("fun", TokenType::KwFun.value)
@lexer.add_pattern("u0", TokenType::KwU0.value)
@lexer.add_pattern("u8", TokenType::KwU8.value)
@lexer.add_pattern("u12", TokenType::KwU12.value)
@lexer.add_pattern("var", TokenType::KwVar.value)
@lexer.add_pattern("if", TokenType::KwIf.value)
@lexer.add_pattern("else", TokenType::KwElse.value)
@lexer.add_pattern("while", TokenType::KwWhile.value)
@lexer.add_pattern("return", TokenType::KwReturn.value)
end
# Converts a string into tokens.
def lex(string)
return @lexer.lex(string)
.select { |t| !t[0][0].whitespace? }
.map do |tuple|
string, id = tuple
Token.new(string, TokenType.new(id))
end
end
end end
end end
end end

View File

@ -1,41 +1,70 @@
module Chalk module Chalk
class Optimizer module Compiler
private def check_dead(inst) # Class to optimize instructions.
if inst.is_a?(LoadRegInstruction) class Optimizer
return inst.from == inst.into # Checks if *inst* is "dead code",
# an instruction that is completely useless.
private def check_dead(inst)
if inst.is_a?(Ir::LoadRegInstruction)
return inst.from == inst.into
end
return false
end end
return false
end
private def optimize!(instructions, range) # Optimizes *instructions* in the basic block given by the *range*,
offset = 0 # storing addresses of instructions to be deleted into *deletions*,
range.each do |index| # and the number of deleted instructions so far into *deletions_at*
if check_dead(instructions[index + offset]) private def optimize!(instructions, range, deletions, deletions_at)
instructions.delete_at(index + offset) range.each do |index|
offset -= 1 if check_dead(instructions[index])
deletions << index
end
deletions_at[index] = deletions.size
end end
end end
return offset
end
def optimize(instructions) # Optimizes the given list of instructions.
instructions = instructions.dup # The basic blocks are inferred from the various
block_boundaries = [instructions.size] # jumps and skips.
instructions.each_with_index do |inst, i| def optimize(instructions)
if inst.is_a?(JumpRelativeInstruction) instructions = instructions.dup
block_boundaries << (inst.offset + i) block_boundaries = [instructions.size]
instructions.each_with_index do |inst, i|
if inst.is_a?(Ir::JumpRelativeInstruction)
block_boundaries << (i + 1)
block_boundaries << (inst.offset + i)
end
if inst.is_a?(Ir::SkipNeInstruction | Ir::SkipEqInstruction |
Ir::SkipRegEqInstruction | Ir::SkipRegNeInstruction)
block_boundaries << (i + 1)
end
end end
end block_boundaries.uniq!.sort!
block_boundaries.sort!
previous = 0 previous = 0
offset = 0 deletions = [] of Int32
block_boundaries.each do |boundary| deletions_at = {} of Int32 => Int32
range = (previous + offset)...(boundary + offset) block_boundaries.each do |boundary|
offset += optimize!(instructions, range) range = previous...boundary
previous = boundary optimize!(instructions, range, deletions, deletions_at)
previous = boundary
end
instructions.each_with_index do |inst, i|
next if !inst.is_a?(Ir::JumpRelativeInstruction)
jump_to = inst.offset + i
next unless deletions_at[jump_to]?
deletions_offset = deletions_at[i] - deletions_at[jump_to]
inst.offset += deletions_offset
end
deletions.reverse!
deletions.each do |i|
instructions.delete_at i
end
return instructions
end end
return instructions
end end
end end
end end

View File

@ -1,173 +1,195 @@
require "./parser_builder.cr" require "./parser_builder.cr"
module Chalk module Chalk
class Parser module ParserCombinators
include ParserBuilder # Parser created out of the various parser combinators.
class Parser
include ParserBuilder
private def create_type # Creates a parser for a type.
either(type(TokenType::KwU0), type(TokenType::KwU8), type(TokenType::KwU12)) private def create_type
end either(type(Compiler::TokenType::KwU0), type(Compiler::TokenType::KwU8), type(Compiler::TokenType::KwU12))
private def create_lit
dec_parser = type(TokenType::LitDec).transform &.string.to_i64
hex_parser = type(TokenType::LitHex).transform &.string.lchop("0x").to_i64(16)
bin_parser = type(TokenType::LitBin).transform &.string.lchop("0b").to_i64(2)
lit_parser = either(dec_parser, hex_parser, bin_parser).transform { |it| TreeLit.new(it).as(Tree) }
return lit_parser
end
private def create_op_expr(atom, op)
pl = PlaceholderParser(Tree).new
recurse = atom.then(op).then(pl).transform do |arr|
arr = arr.flatten
TreeOp.new(
arr[1].as(Token).type,
arr[0].as(Tree),
arr[2].as(Tree)).as(Tree)
end end
pl.parser = either(recurse, atom)
return pl
end
private def create_op_exprs(atom, ops) # Creates a parser for an integer literal.
ops.reduce(atom) do |previous, current| private def create_lit
create_op_expr(previous, current) dec_parser = type(Compiler::TokenType::LitDec).transform &.string.to_i64
hex_parser = type(Compiler::TokenType::LitHex).transform &.string.lchop("0x").to_i64(16)
bin_parser = type(Compiler::TokenType::LitBin).transform &.string.lchop("0b").to_i64(2)
lit_parser = either(dec_parser, hex_parser, bin_parser).transform { |it| Trees::TreeLit.new(it).as(Trees::Tree) }
return lit_parser
end end
end
private def create_call(expr) # Creates a parser for an operation with a given *atom* parser
call = type(TokenType::Id).then(char '(').then(delimited(expr, char ',')).then(char ')').transform do |arr| # and *op* parser.
arr = arr.flatten private def create_op_expr(atom, op)
name = arr[0].as(Token).string pl = PlaceholderParser(Trees::Tree).new
params = arr[2..arr.size - 2].map &.as(Tree) recurse = atom.then(op).then(pl).transform do |arr|
TreeCall.new(name, params).as(Tree)
end
return call
end
private def create_expr
expr_place = PlaceholderParser(Tree).new
literal = create_lit
id = type(TokenType::Id).transform { |it| TreeId.new(it.string).as(Tree) }
call = create_call(expr_place)
atom = either(literal, call, id)
ops = [either(type(TokenType::OpMul), type(TokenType::OpDiv)),
either(type(TokenType::OpAdd), type(TokenType::OpSub)),
type(TokenType::OpXor),
type(TokenType::OpAnd),
type(TokenType::OpOr)]
expr = create_op_exprs(atom, ops)
expr_place.parser = expr
return expr
end
private def create_var(expr)
var = type(TokenType::KwVar).then(type(TokenType::Id)).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[1].as(Token).string
exp = arr[arr.size - 2].as(Tree)
TreeVar.new(name, exp).as(Tree)
end
return var
end
private def create_assign(expr)
assign = type(TokenType::Id).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[0].as(Token).string
exp = arr[arr.size - 2].as(Tree)
TreeAssign.new(name, exp).as(Tree)
end
return assign
end
private def create_basic(expr)
basic = expr.then(char ';').transform do |arr|
arr.flatten[0].as(Tree)
end
return basic
end
private def create_if(expr, block)
iff = type(TokenType::KwIf).then(char '(').then(expr).then(char ')').then(block)
.then(optional(type(TokenType::KwElse).then(block)))
.transform do |arr|
arr = arr.flatten arr = arr.flatten
cond = arr[2].as(Tree) Trees::TreeOp.new(
code = arr[4].as(Tree) arr[1].as(Compiler::Token).type,
otherwise = arr.size == 7 ? arr[6].as(Tree) : nil arr[0].as(Trees::Tree),
TreeIf.new(cond, code, otherwise).as(Tree) arr[2].as(Trees::Tree)).as(Trees::Tree)
end end
return iff pl.parser = either(recurse, atom)
end return pl
private def create_while(expr, block)
whilee = type(TokenType::KwWhile).then(char '(').then(expr).then(char ')').then(block).transform do |arr|
arr = arr.flatten
cond = arr[2].as(Tree)
code = arr[4].as(Tree)
TreeWhile.new(cond, code).as(Tree)
end end
return whilee
end
private def create_return(expr) # Creates a parser to parse layers of *ops* with multiple
returnn = type(TokenType::KwReturn).then(expr).then(char ';').transform do |arr| # levels of precedence, specified by their order. The *atom*
arr = arr.flatten # is the most basic expression.
value = arr[1].as(Tree) private def create_op_exprs(atom, ops)
TreeReturn.new(value).as(Tree) ops.reduce(atom) do |previous, current|
create_op_expr(previous, current)
end
end end
return returnn
end
private def create_block(statement) # Creates a parser for a call, with the given expression parser.
block = char('{').then(many(statement)).then(char '}').transform do |arr| private def create_call(expr)
arr = arr.flatten call = type(Compiler::TokenType::Id).then(char '(').then(delimited(expr, char ',')).then(char ')').transform do |arr|
params = arr[1..arr.size - 2].map &.as(Tree)
TreeBlock.new(params).as(Tree)
end
return block
end
private def create_statement_block
statement_place = PlaceholderParser(Tree).new
expr = create_expr
block = create_block(statement_place)
iff = create_if(expr, block)
whilee = create_while(expr, block)
returnn = create_return(expr)
var = create_var(expr)
assign = create_assign(expr)
basic = create_basic(expr)
statement = either(basic, var, assign, block, iff, whilee, returnn)
statement_place.parser = statement
return {statement, block}
end
private def create_func(block, type)
func = type(TokenType::KwFun).then(type(TokenType::Id))
.then(char '(').then(delimited(type(TokenType::Id), char ',')).then(char ')')
.then(char ':').then(type)
.then(block).transform do |arr|
arr = arr.flatten arr = arr.flatten
name = arr[1].as(Token).string name = arr[0].as(Compiler::Token).string
params = arr[3..arr.size - 5].map &.as(Token).string params = arr[2..arr.size - 2].map &.as(Trees::Tree)
code = arr[arr.size - 1].as(Tree) Trees::TreeCall.new(name, params).as(Trees::Tree)
type = arr[arr.size - 2].as(Token).type
TreeFunction.new(name, params, code)
end end
return func return call
end end
def initialize # Creates a parser for an expression.
_, block = create_statement_block private def create_expr
@parser = many(create_func(block, create_type)).as(BasicParser(Array(TreeFunction))) expr_place = PlaceholderParser(Trees::Tree).new
end literal = create_lit
id = type(Compiler::TokenType::Id).transform { |it| Trees::TreeId.new(it.string).as(Trees::Tree) }
call = create_call(expr_place)
atom = either(literal, call, id)
def parse?(tokens) ops = [either(type(Compiler::TokenType::OpMul), type(Compiler::TokenType::OpDiv)),
return @parser.parse?(tokens, 0).try &.[0] either(type(Compiler::TokenType::OpAdd), type(Compiler::TokenType::OpSub)),
type(Compiler::TokenType::OpXor),
type(Compiler::TokenType::OpAnd),
type(Compiler::TokenType::OpOr)]
expr = create_op_exprs(atom, ops)
expr_place.parser = expr
return expr
end
# Creates a parser for a var statement.
private def create_var(expr)
var = type(Compiler::TokenType::KwVar).then(type(Compiler::TokenType::Id)).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[1].as(Compiler::Token).string
exp = arr[arr.size - 2].as(Trees::Tree)
Trees::TreeVar.new(name, exp).as(Trees::Tree)
end
return var
end
# Creates a parser for an assignment statement.
private def create_assign(expr)
assign = type(Compiler::TokenType::Id).then(char '=').then(expr).then(char ';').transform do |arr|
arr = arr.flatten
name = arr[0].as(Compiler::Token).string
exp = arr[arr.size - 2].as(Trees::Tree)
Trees::TreeAssign.new(name, exp).as(Trees::Tree)
end
return assign
end
# Creates a parser for a basic statement.
private def create_basic(expr)
basic = expr.then(char ';').transform do |arr|
arr.flatten[0].as(Trees::Tree)
end
return basic
end
# Creates a parser for an if statement.
private def create_if(expr, block)
iff = type(Compiler::TokenType::KwIf).then(char '(').then(expr).then(char ')').then(block)
.then(optional(type(Compiler::TokenType::KwElse).then(block)))
.transform do |arr|
arr = arr.flatten
cond = arr[2].as(Trees::Tree)
code = arr[4].as(Trees::Tree)
otherwise = arr.size == 7 ? arr[6].as(Trees::Tree) : nil
Trees::TreeIf.new(cond, code, otherwise).as(Trees::Tree)
end
return iff
end
# Creates a parser for a while loop.
private def create_while(expr, block)
whilee = type(Compiler::TokenType::KwWhile).then(char '(').then(expr).then(char ')').then(block).transform do |arr|
arr = arr.flatten
cond = arr[2].as(Trees::Tree)
code = arr[4].as(Trees::Tree)
Trees::TreeWhile.new(cond, code).as(Trees::Tree)
end
return whilee
end
# Creates a parser for a return.
private def create_return(expr)
returnn = type(Compiler::TokenType::KwReturn).then(expr).then(char ';').transform do |arr|
arr = arr.flatten
value = arr[1].as(Trees::Tree)
Trees::TreeReturn.new(value).as(Trees::Tree)
end
return returnn
end
# Creates a parser for a block of statements.
private def create_block(statement)
block = char('{').then(many(statement)).then(char '}').transform do |arr|
arr = arr.flatten
params = arr[1..arr.size - 2].map &.as(Trees::Tree)
Trees::TreeBlock.new(params).as(Trees::Tree)
end
return block
end
# Creates a statement and block parser, returning both.
private def create_statement_block
statement_place = PlaceholderParser(Trees::Tree).new
expr = create_expr
block = create_block(statement_place)
iff = create_if(expr, block)
whilee = create_while(expr, block)
returnn = create_return(expr)
var = create_var(expr)
assign = create_assign(expr)
basic = create_basic(expr)
statement = either(basic, var, assign, block, iff, whilee, returnn)
statement_place.parser = statement
return {statement, block}
end
# Creates a parser for a function declaration.
private def create_func(block, type)
func = type(Compiler::TokenType::KwFun).then(type(Compiler::TokenType::Id))
.then(char '(').then(delimited(type(Compiler::TokenType::Id), char ',')).then(char ')')
.then(char ':').then(type)
.then(block).transform do |arr|
arr = arr.flatten
name = arr[1].as(Compiler::Token).string
params = arr[3..arr.size - 5].map &.as(Compiler::Token).string
code = arr[arr.size - 1].as(Trees::Tree)
type = arr[arr.size - 2].as(Compiler::Token).type
Trees::TreeFunction.new(name, params, code)
end
return func
end
def initialize
_, block = create_statement_block
@parser = many(create_func(block, create_type)).as(BasicParser(Array(Trees::TreeFunction)))
end
# Parses the given tokens into a tree.
def parse?(tokens)
return @parser.parse?(tokens, 0).try &.[0]
end
end end
end end
end end

View File

@ -2,37 +2,47 @@ require "./lexer.cr"
require "./parsers.cr" require "./parsers.cr"
module Chalk module Chalk
module ParserBuilder module ParserCombinators
def type(type) : BasicParser(Token) module ParserBuilder
return TypeParser.new(type).as(BasicParser(Token)) # Creates a parser for a given token type.
end def type(type) : BasicParser(Compiler::Token)
return TypeParser.new(type).as(BasicParser(Compiler::Token))
end
def char(type) : BasicParser(Token) # Creates a parser for a specific character.
return CharParser.new(type).as(BasicParser(Token)) def char(type) : BasicParser(Compiler::Token)
end return CharParser.new(type).as(BasicParser(Compiler::Token))
end
def transform(parser : BasicParser(T), &transform : T -> R) forall T, R # Creates a parser that transforms a value according to a block.
return TransformParser.new(parser, &transform).as(BasicParser(R)) def transform(parser : BasicParser(T), &transform : T -> R) forall T, R
end return TransformParser.new(parser, &transform).as(BasicParser(R))
end
def optional(parser : BasicParser(T)) : BasicParser(T?) forall T # Creates a parser that allows for failure to match.
return OptionalParser.new(parser).as(BasicParser(T?)) def optional(parser : BasicParser(T)) : BasicParser(T?) forall T
end return OptionalParser.new(parser).as(BasicParser(T?))
end
def either(*args : BasicParser(T)) : BasicParser(T) forall T # Creates a parser that tries several parsers in sequence until one succeeds.
return EitherParser.new(args.to_a).as(BasicParser(T)) def either(*args : BasicParser(T)) : BasicParser(T) forall T
end return EitherParser.new(args.to_a).as(BasicParser(T))
end
def many(parser : BasicParser(T)) : BasicParser(Array(T)) forall T # Creates a parser that parses one or more of the given parsers.
return ManyParser.new(parser).as(BasicParser(Array(T))) def many(parser : BasicParser(T)) : BasicParser(Array(T)) forall T
end return ManyParser.new(parser).as(BasicParser(Array(T)))
end
def delimited(parser : BasicParser(T), delimiter : BasicParser(R)) : BasicParser(Array(T)) forall T, R # Creates a parser that parses one parser delimited by another.
return DelimitedParser.new(parser, delimiter).as(BasicParser(Array(T))) def delimited(parser : BasicParser(T), delimiter : BasicParser(R)) : BasicParser(Array(T)) forall T, R
end return DelimitedParser.new(parser, delimiter).as(BasicParser(Array(T)))
end
def then(first : BasicParser(T), second : BasicParser(R)) forall T, R # Creates a parser that parses one parser, then the next.
return NextParser.new(first, second).as(BasicParser(Array(T | R))) def then(first : BasicParser(T), second : BasicParser(R)) forall T, R
return NextParser.new(first, second).as(BasicParser(Array(T | R)))
end
end end
end end
end end

View File

@ -1,146 +1,171 @@
module Chalk module Chalk
abstract class BasicParser(T) module ParserCombinators
abstract def parse?(tokens : Array(Token), # Abstract class for a parser function,
index : Int64) : Tuple(T, Int64)? # as used in parser combinators. This is basically
# a building block of parsing.
abstract class BasicParser(T)
# Attempts to parse the given *tokens*, starting at the given *index*.
abstract def parse?(tokens : Array(Compiler::Token),
index : Int64) : Tuple(T, Int64)?
def parse(tokens, index) # Attempts to parse the given tokens like `#parse?`, but throws
return parse?(tokens, index).not_nil! # on error.
end def parse(tokens, index)
return parse?(tokens, index).not_nil!
def transform(&transform : T -> R) forall R
return TransformParser.new(self, &transform).as(BasicParser(R))
end
def then(other : BasicParser(R)) : BasicParser(Array(T | R)) forall R
return NextParser.new(self, other).as(BasicParser(Array(T | R)))
end
end
class TypeParser < BasicParser(Token)
def initialize(@type : TokenType)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless tokens[index].type == @type
return {tokens[index], index + 1}
end
end
class CharParser < BasicParser(Token)
def initialize(@char : Char)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless (tokens[index].type == TokenType::Any) &&
tokens[index].string[0] == @char
return {tokens[index], index + 1}
end
end
class TransformParser(T, R) < BasicParser(R)
def initialize(@parser : BasicParser(T), &@block : T -> R)
end
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {@block.call(parsed[0]), parsed[1]}
end end
return nil
end
end
class OptionalParser(T) < BasicParser(T?) # Applies the given transformation to this parser,
def initialize(@parser : BasicParser(T)) # creating a new parser.
end def transform(&transform : T -> R) forall R
return TransformParser.new(self, &transform).as(BasicParser(R))
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {parsed[0], parsed[1]}
end end
return {nil, index}
end
end
class EitherParser(T) < BasicParser(T) # Creates a sequence with the given parser,
def initialize(@parsers : Array(BasicParser(T))) # creating a new parser.
def then(other : BasicParser(R)) : BasicParser(Array(T | R)) forall R
return NextParser.new(self, other).as(BasicParser(Array(T | R)))
end
end end
def parse?(tokens, index) # Parser that expects a specific token type.
@parsers.each do |parser| class TypeParser < BasicParser(Compiler::Token)
if parsed = parser.parse?(tokens, index) def initialize(@type : Compiler::TokenType)
return parsed end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless tokens[index].type == @type
return {tokens[index], index + 1}
end
end
# Parser that expects a specific character.
class CharParser < BasicParser(Compiler::Token)
def initialize(@char : Char)
end
def parse?(tokens, index)
return nil unless index < tokens.size
return nil unless (tokens[index].type == Compiler::TokenType::Any) &&
tokens[index].string[0] == @char
return {tokens[index], index + 1}
end
end
# Parser that applies a transformation to the output
# of its child parser.
class TransformParser(T, R) < BasicParser(R)
def initialize(@parser : BasicParser(T), &@block : T -> R)
end
def parse?(tokens, index)
if parsed = @parser.parse?(tokens, index)
return {@block.call(parsed[0]), parsed[1]}
end end
return nil
end end
return nil
end
end
class ManyParser(T) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T))
end end
def parse?(tokens, index) # Parser that attempts to use its child parser,
many = [] of T # and successfully returns nil if the child parser fails.
while parsed = @parser.parse?(tokens, index) class OptionalParser(T) < BasicParser(T?)
item, index = parsed def initialize(@parser : BasicParser(T))
many << item
end
return {many, index}
end
end
class DelimitedParser(T, R) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T), @delimiter : BasicParser(R))
end
def parse?(tokens, index)
array = [] of T
first = @parser.parse?(tokens, index)
return {array, index} unless first
first_value, index = first
array << first_value
while delimiter = @delimiter.parse?(tokens, index)
_, new_index = delimiter
new = @parser.parse?(tokens, new_index)
break unless new
new_value, index = new
array << new_value
end end
return {array, index} def parse?(tokens, index)
end if parsed = @parser.parse?(tokens, index)
end return {parsed[0], parsed[1]}
end
class NextParser(T, R) < BasicParser(Array(T | R)) return {nil, index}
def initialize(@first : BasicParser(T), @second : BasicParser(R)) end
end end
def parse?(tokens, index) # Parser that tries all of its children until one succeeds.
first = @first.parse?(tokens, index) class EitherParser(T) < BasicParser(T)
return nil unless first def initialize(@parsers : Array(BasicParser(T)))
first_value, index = first end
second = @second.parse?(tokens, index) def parse?(tokens, index)
return nil unless second @parsers.each do |parser|
second_value, index = second if parsed = parser.parse?(tokens, index)
return parsed
array = Array(T | R).new end
array << first_value << second_value end
return {array, index} return nil
end end
end
class PlaceholderParser(T) < BasicParser(T)
property parser : BasicParser(T)?
def initialize
@parser = nil
end end
def parse?(tokens, index) # Parser that parses at least one of a given type.
@parser.try &.parse?(tokens, index) class ManyParser(T) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T))
end
def parse?(tokens, index)
many = [] of T
while parsed = @parser.parse?(tokens, index)
item, index = parsed
many << item
end
return {many, index}
end
end
# Parser that parses at least 0 of its child parser,
# delimited with its other child parser.
class DelimitedParser(T, R) < BasicParser(Array(T))
def initialize(@parser : BasicParser(T), @delimiter : BasicParser(R))
end
def parse?(tokens, index)
array = [] of T
first = @parser.parse?(tokens, index)
return {array, index} unless first
first_value, index = first
array << first_value
while delimiter = @delimiter.parse?(tokens, index)
_, new_index = delimiter
new = @parser.parse?(tokens, new_index)
break unless new
new_value, index = new
array << new_value
end
return {array, index}
end
end
# Parser that parses using the first parser, and, if it succeeds,
# parses using the second parses.
class NextParser(T, R) < BasicParser(Array(T | R))
def initialize(@first : BasicParser(T), @second : BasicParser(R))
end
def parse?(tokens, index)
first = @first.parse?(tokens, index)
return nil unless first
first_value, index = first
second = @second.parse?(tokens, index)
return nil unless second
second_value, index = second
array = Array(T | R).new
array << first_value << second_value
return {array, index}
end
end
# Parser used to declare recursive grammars.
class PlaceholderParser(T) < BasicParser(T)
property parser : BasicParser(T)?
def initialize
@parser = nil
end
def parse?(tokens, index)
@parser.try &.parse?(tokens, index)
end
end end
end end
end end

View File

@ -1,53 +1,55 @@
require "./tree.cr" require "./tree.cr"
module Chalk module Chalk
class PrintVisitor < Visitor module Trees
def initialize(@stream : IO) # Visitor that prints a `Tree`.
@indent = 0 class PrintVisitor < Visitor
end def initialize(@stream : IO)
@indent = 0
def print_indent
@indent.times do
@stream << " "
end end
end
def visit(id : TreeId) private def print_indent
print_indent @indent.times do
@stream << id.id << "\n" @stream << " "
end end
def visit(lit : TreeLit)
print_indent
@stream << lit.lit << "\n"
end
def visit(op : TreeOp)
print_indent
@stream << "[op] "
@stream << op.op << "\n"
@indent += 1
end
def finish(op : TreeOp)
@indent -= 1
end
def visit(function : TreeFunction)
print_indent
@stream << "[function] " << function.name << "( "
function.params.each do |param|
@stream << param << " "
end end
@stream << ")" << "\n"
@indent += 1
end
def finish(function : TreeFunction) def visit(id : TreeId)
@indent -= 1 print_indent
end @stream << id.id << "\n"
end
macro forward(text, type) def visit(lit : TreeLit)
print_indent
@stream << lit.lit << "\n"
end
def visit(op : TreeOp)
print_indent
@stream << "[op] "
@stream << op.op << "\n"
@indent += 1
end
def finish(op : TreeOp)
@indent -= 1
end
def visit(function : TreeFunction)
print_indent
@stream << "[function] " << function.name << "( "
function.params.each do |param|
@stream << param << " "
end
@stream << ")" << "\n"
@indent += 1
end
def finish(function : TreeFunction)
@indent -= 1
end
macro forward(text, type)
def visit(tree : {{type}}) def visit(tree : {{type}})
print_indent print_indent
@stream << {{text}} << "\n" @stream << {{text}} << "\n"
@ -59,18 +61,19 @@ module Chalk
end end
end end
forward("[call]", TreeCall) forward("[call]", TreeCall)
forward("[block]", TreeBlock) forward("[block]", TreeBlock)
forward("[var]", TreeVar) forward("[var]", TreeVar)
forward("[assign]", TreeAssign) forward("[assign]", TreeAssign)
forward("[if]", TreeIf) forward("[if]", TreeIf)
forward("[while]", TreeWhile) forward("[while]", TreeWhile)
forward("[return]", TreeReturn) forward("[return]", TreeReturn)
end end
class Tree class Tree
def to_s(io) def to_s(io)
accept(PrintVisitor.new io) accept(PrintVisitor.new io)
end
end end
end end
end end

View File

@ -1,51 +1,68 @@
module Chalk module Chalk
class Entry module Compiler
end # An entry in the symbol table.
class Entry
class FunctionEntry < Entry
property function : TreeFunction | BuiltinFunction | InlineFunction
property addr : Int32
def initialize(@function, @addr = -1)
end end
def to_s(io) # An entry that represents a function in the symbol table.
io << "[function]" class FunctionEntry < Entry
end # Gets the function stored in this entry.
end getter function
# Gets the address in code of this function.
getter addr
# Sets the address in code of this function.
setter addr
class VarEntry < Entry def initialize(@function : Trees::TreeFunction | Builtin::BuiltinFunction | Builtin::InlineFunction,
property register : Int32 @addr = -1)
end
def initialize(@register)
end def to_s(io)
io << "[function]"
def to_s(io)
io << "[variable] " << "(R" << @register.to_s(16) << ")"
end
end
class Table
property parent : Table?
def initialize(@parent = nil)
@data = {} of String => Entry
end
def []?(key)
if entry = @data[key]?
return entry
end end
return @parent.try &.[key]?
end end
def []=(key, entry) # An entry that represents a variable in the symbol table.
@data[key] = entry class VarEntry < Entry
# Gets the register occupied by the variable
# in this entry.
getter register
def initialize(@register : Int32)
end
def to_s(io)
io << "[variable] " << "(R" << @register.to_s(16) << ")"
end
end end
def to_s(io) # A symbol table.
@parent.try &.to_s(io) class Table
io << @data.map { |k, v| k + ": " + v.to_s }.join("\n") # Gets the parent of this table.
getter parent
def initialize(@parent : Table? = nil)
@data = {} of String => Entry
end
# Looks up the given *key* first in this table,
# then in its parent, continuing recursively.
def []?(key)
if entry = @data[key]?
return entry
end
return @parent.try &.[key]?
end
# Stores an *entry* under the given *key* into this table.
def []=(key, entry)
@data[key] = entry
end
def to_s(io)
@parent.try &.to_s(io)
io << @data.map { |k, v| k + ": " + v.to_s }.join("\n")
end
end end
end end
end end

View File

@ -1,228 +1,248 @@
module Chalk module Chalk
class Visitor module Trees
def visit(tree) # A class used to visit nodes of a tree.
end class Visitor
def visit(tree)
def finish(tree)
end
end
class Transformer
def transform(tree)
return tree
end
end
class Tree
def accept(v)
v.visit(self)
v.finish(self)
end
def apply(t)
return t.transform(self)
end
end
class TreeId < Tree
property id : String
def initialize(@id)
end
end
class TreeLit < Tree
property lit : Int64
def initialize(@lit)
end
end
class TreeCall < Tree
property name : String
property params : Array(Tree)
def initialize(@name, @params)
end
def accept(v)
v.visit(self)
@params.each &.accept(v)
v.finish(self)
end
def apply(t)
@params.map! do |param|
param.apply(t)
end end
return t.transform(self)
end
end
class TreeOp < Tree def finish(tree)
property op : TokenType
property left : Tree
property right : Tree
def initialize(@op, @left, @right)
end
def accept(v)
v.visit(self)
@left.accept(v)
@right.accept(v)
v.finish(self)
end
def apply(t)
@left = @left.apply(t)
@right = @right.apply(t)
return t.transform(self)
end
end
class TreeBlock < Tree
property children : Array(Tree)
def initialize(@children)
end
def accept(v)
v.visit(self)
@children.each &.accept(v)
v.finish(self)
end
def apply(t)
@children.map! do |child|
child.apply(t)
end end
return t.transform(self)
end
end
class TreeFunction < Tree
property name : String
property params : Array(String)
property block : Tree
def initialize(@name, @params, @block)
end end
def param_count # A class used to transform a tree, bottom up.
return @params.size # "Modern Compiler Design" refers to this technique
# as BURS.
class Transformer
def transform(tree)
return tree
end
end end
def accept(v) # The base class of a tree.
v.visit(self) class Tree
@block.accept(v) def accept(v)
v.finish(self) v.visit(self)
v.finish(self)
end
def apply(t)
return t.transform(self)
end
end end
def apply(t) # A tree that represents an ID.
@block = @block.apply(t) class TreeId < Tree
return t.transform(self) property id : String
end
end
class TreeVar < Tree def initialize(@id)
property name : String end
property expr : Tree
def initialize(@name, @expr)
end end
def accept(v) # A tree that represents an integer literal.
v.visit(self) class TreeLit < Tree
@expr.accept(v) property lit : Int64
v.finish(self)
def initialize(@lit)
end
end end
def apply(t) # A tree that represents a function call.
@expr = @expr.apply(t) class TreeCall < Tree
return t.transform(self) property name : String
end property params : Array(Tree)
end
class TreeAssign < Tree def initialize(@name, @params)
property name : String end
property expr : Tree
def initialize(@name, @expr) def accept(v)
v.visit(self)
@params.each &.accept(v)
v.finish(self)
end
def apply(t)
@params.map! do |param|
param.apply(t)
end
return t.transform(self)
end
end end
def accept(v) # A tree that represents an operation on two values.
v.visit(self) class TreeOp < Tree
@expr.accept(v) property op : Compiler::TokenType
v.finish(self) property left : Tree
property right : Tree
def initialize(@op, @left, @right)
end
def accept(v)
v.visit(self)
@left.accept(v)
@right.accept(v)
v.finish(self)
end
def apply(t)
@left = @left.apply(t)
@right = @right.apply(t)
return t.transform(self)
end
end end
def apply(t) # A tree that represents a block of statements.
@expr = @expr.apply(t) class TreeBlock < Tree
return t.transform(self) property children : Array(Tree)
end
end
class TreeIf < Tree def initialize(@children)
property condition : Tree end
property block : Tree
property otherwise : Tree?
def initialize(@condition, @block, @otherwise = nil) def accept(v)
v.visit(self)
@children.each &.accept(v)
v.finish(self)
end
def apply(t)
@children.map! do |child|
child.apply(t)
end
return t.transform(self)
end
end end
def accept(v) # A tree that represents a function declaration.
v.visit(self) class TreeFunction < Tree
@condition.accept(v) property name : String
@block.accept(v) property params : Array(String)
@otherwise.try &.accept(v) property block : Tree
v.finish(self)
def initialize(@name, @params, @block)
end
def param_count
return @params.size
end
def accept(v)
v.visit(self)
@block.accept(v)
v.finish(self)
end
def apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end end
def apply(t) # A tree that represents the declaration of
@condition = @condition.apply(t) # a new variable.
@block = @block.apply(t) class TreeVar < Tree
@otherwise = @otherwise.try &.apply(t) property name : String
return t.transform(self) property expr : Tree
end
end
class TreeWhile < Tree def initialize(@name, @expr)
property condition : Tree end
property block : Tree
def initialize(@condition, @block) def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end end
def accept(v) # A tree that represents the assignment
v.visit(self) # to an existing variable.
@condition.accept(v) class TreeAssign < Tree
@block.accept(v) property name : String
v.finish(self) property expr : Tree
def initialize(@name, @expr)
end
def accept(v)
v.visit(self)
@expr.accept(v)
v.finish(self)
end
def apply(t)
@expr = @expr.apply(t)
return t.transform(self)
end
end end
def apply(t) # A tree that represents an if statement.
@condition = @condition.apply(t) class TreeIf < Tree
@block = @block.apply(t) property condition : Tree
return t.transform(self) property block : Tree
end property otherwise : Tree?
end
class TreeReturn < Tree def initialize(@condition, @block, @otherwise = nil)
property rvalue : Tree end
def initialize(@rvalue) def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
@otherwise.try &.accept(v)
v.finish(self)
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
@otherwise = @otherwise.try &.apply(t)
return t.transform(self)
end
end end
def accept(v) # A tree that represents a while loop.
v.visit(self) class TreeWhile < Tree
@rvalue.accept(v) property condition : Tree
v.finish(self) property block : Tree
def initialize(@condition, @block)
end
def accept(v)
v.visit(self)
@condition.accept(v)
@block.accept(v)
v.finish(self)
end
def apply(t)
@condition = @condition.apply(t)
@block = @block.apply(t)
return t.transform(self)
end
end end
def apply(t) # A tree that represents a return statement.
@rvalue = @rvalue.apply(t) class TreeReturn < Tree
return t.transform(self) property rvalue : Tree
def initialize(@rvalue)
end
def accept(v)
v.visit(self)
@rvalue.accept(v)
v.finish(self)
end
def apply(t)
@rvalue = @rvalue.apply(t)
return t.transform(self)
end
end end
end end
end end