2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								module Lattice where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import Data.Nat.Properties as NatProps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								open import Relation.Binary.Definitions
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								open import Data.Nat as Nat using (ℕ; _≤_)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								open import Data.Product using (_×_; _,_)
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								open import Data.Sum using (_⊎_; inj₁; inj₂)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								open import Agda.Primitive using (lsuc; Level)
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								open import NatMap using (NatMap)
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record IsPreorder {a} (A : Set a) (_≼_ : A → A → Set a) : Set a where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ≼-refl : Reflexive (_≼_)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ≼-trans : Transitive (_≼_)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ≼-antisym : Antisymmetric (_≡_) (_≼_)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								isPreorderFlip : {a : Level} → {A : Set a} → {_≼_ : A → A → Set a} → IsPreorder A _≼_ → IsPreorder A (λ x y → y ≼ x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								isPreorderFlip isPreorder = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    { ≼-refl = IsPreorder.≼-refl isPreorder
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ; ≼-trans = λ {x} {y} {z} x≽y y≽z → IsPreorder.≼-trans isPreorder y≽z x≽y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ; ≼-antisym = λ {x} {y} x≽y y≽x → IsPreorder.≼-antisym isPreorder y≽x x≽y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record Preorder {a} (A : Set a) : Set (lsuc a) where
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _≼_ : A → A → Set a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        isPreorder : IsPreorder A _≼_
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsPreorder isPreorder public
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record IsSemilattice {a} (A : Set a) (_≼_ : A → A → Set a) (_⊔_ : A → A → A) : Set a where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        isPreorder : IsPreorder A _≼_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ⊔-assoc : (x y z : A) → (x ⊔ y) ⊔ z ≡ x ⊔ (y ⊔ z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ⊔-comm : (x y : A) → x ⊔ y ≡ y ⊔ x
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ⊔-idemp : (x : A) → x ⊔ x ≡ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        ⊔-bound : (x y z : A) → x ⊔ y ≡ z → (x ≼ z × y ≼ z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        ⊔-least : (x y z : A) → x ⊔ y ≡ z → ∀ (z' : A) → (x ≼ z' × y ≼ z') → z ≼ z'
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsPreorder isPreorder public
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record Semilattice {a} (A : Set a) : Set (lsuc a) where
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _≼_ : A → A → Set a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _⊔_ : A → A → A
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        isSemilattice : IsSemilattice A _≼_ _⊔_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsSemilattice isSemilattice public
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record IsLattice {a} (A : Set a) (_≼_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set a where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    _≽_ : A → A → Set a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    a ≽ b = b ≼ a
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        joinSemilattice : IsSemilattice A _≼_ _⊔_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        meetSemilattice : IsSemilattice A _≽_ _⊓_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        absorb-⊔-⊓ : (x y : A) → x ⊔ (x ⊓ y) ≡ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        absorb-⊓-⊔ : (x y : A) → x ⊓ (x ⊔ y) ≡ x
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsSemilattice joinSemilattice public
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsSemilattice meetSemilattice public renaming
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ( ⊔-assoc to ⊓-assoc
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; ⊔-comm to ⊓-comm
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; ⊔-idemp to ⊓-idemp
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; ⊔-bound to ⊓-bound
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; ⊔-least to ⊓-least
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								record Lattice {a} (A : Set a) : Set (lsuc a) where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    field
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _≼_ : A → A → Set a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _⊔_ : A → A → A
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _⊓_ : A → A → A
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        isLattice : IsLattice A _≼_ _⊔_ _⊓_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open IsLattice isLattice public
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								private module NatInstances where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open Nat
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open NatProps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open Eq
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    open Data.Sum
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-04 21:08:31 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    NatPreorder : Preorder ℕ
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    NatPreorder = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        { _≼_ = _≤_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; isPreorder = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            { ≼-refl = ≤-refl
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ≼-trans = ≤-trans
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ≼-antisym = ≤-antisym
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    private
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        max-bound₁ {x} {y} {z} x⊔y≡z rewrite sym x⊔y≡z rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl)
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        max-bound₂ : {x y z : ℕ} → x ⊔ y ≡ z → y ≤ z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        max-bound₂ {x} {y} {z} x⊔y≡z rewrite sym x⊔y≡z = m≤n⇒m≤o⊔n x (≤-refl)
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        max-least : (x y z : ℕ) → x ⊔ y ≡ z → ∀ (z' : ℕ) → (x ≤ z' × y ≤ z') → z ≤ z'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        max-least x y z x⊔y≡z z' (x≤z' , y≤z') with (⊔-sel x y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...                                    | inj₁ x⊔y≡x rewrite trans (sym x⊔y≡z) (x⊔y≡x) = x≤z'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...                                    | inj₂ x⊔y≡y rewrite trans (sym x⊔y≡z) (x⊔y≡y) = y≤z'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    NatMaxSemilattice : Semilattice ℕ
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    NatMaxSemilattice = record
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        { _≼_ = _≤_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; _⊔_ = _⊔_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; isSemilattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            { isPreorder = Preorder.isPreorder NatPreorder
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-assoc = ⊔-assoc
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-comm = ⊔-comm
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-idemp = ⊔-idem
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 21:50:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-bound = λ x y z x⊔y≡z → (max-bound₁ x⊔y≡z , max-bound₂ x⊔y≡z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-least = max-least
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    private
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        min-bound₁ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        min-bound₁ {x} {y} {z} x⊓y≡z rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        min-bound₂ : {x y z : ℕ} → x ⊓ y ≡ z → z ≤ y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        min-bound₂ {x} {y} {z} x⊓y≡z rewrite sym x⊓y≡z rewrite ⊓-comm x y = m≤n⇒m⊓o≤n x (≤-refl)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        min-greatest : (x y z : ℕ) → x ⊓ y ≡ z → ∀ (z' : ℕ) → (z' ≤ x × z' ≤ y) → z' ≤ z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        min-greatest x y z x⊓y≡z z' (z'≤x , z'≤y) with (⊓-sel x y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...                                    | inj₁ x⊓y≡x rewrite trans (sym x⊓y≡z) (x⊓y≡x) = z'≤x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...                                    | inj₂ x⊓y≡y rewrite trans (sym x⊓y≡z) (x⊓y≡y) = z'≤y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    NatMinSemilattice : Semilattice ℕ
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    NatMinSemilattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        { _≼_ = _≥_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; _⊔_ = _⊓_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; isSemilattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            { isPreorder = isPreorderFlip (Preorder.isPreorder NatPreorder)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-assoc = ⊓-assoc
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-comm = ⊓-comm
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-idemp = ⊓-idem
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-bound = λ x y z x⊓y≡z → (min-bound₁ x⊓y≡z , min-bound₂ x⊓y≡z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; ⊔-least = min-greatest
							 | 
						
					
						
							
								
									
										
										
										
											2023-04-06 23:08:49 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 23:22:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-14 18:18:17 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    private
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                -- >:(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            where
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                -- >:(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                helper : x ⊔ (x ⊓ y) ≤ x ⊔ x  → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 23:22:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    NatLattice : Lattice ℕ
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    NatLattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        { _≼_ = _≤_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; _⊔_ = _⊔_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; _⊓_ = _⊓_
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; isLattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            { joinSemilattice = Semilattice.isSemilattice NatMaxSemilattice
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; meetSemilattice = Semilattice.isSemilattice NatMinSemilattice
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-14 18:18:17 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            ; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-13 23:22:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
										
										
											2023-07-14 18:42:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    ProdSemilattice : {a : Level} → {A B : Set a} → {{ Semilattice A }} → {{ Semilattice B }} → Semilattice (A × B)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ProdSemilattice {a} {A} {B} {{slA}} {{slB}} = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        { _≼_ = λ (a₁ ,  b₁) (a₂ , b₂) → Semilattice._≼_ slA a₁ a₂ × Semilattice._≼_ slB b₁ b₂
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; _⊔_ = λ (a₁ ,  b₁) (a₂ , b₂) → (Semilattice._⊔_ slA a₁ a₂ , Semilattice._⊔_ slB b₁ b₂)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ; isSemilattice = record
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 |