agda-spa/Equivalence.agda

79 lines
3.3 KiB
Agda
Raw Normal View History

module Equivalence where
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
record IsEquivalence {a} (A : Set a) (_≈_ : A A Set a) : Set a where
field
≈-refl : {a : A} a a
≈-sym : {a b : A} a b b a
≈-trans : {a b c : A} a b b c a c
module IsEquivalenceInstances where
module ForProd {a} {A B : Set a}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set a)
(eA : IsEquivalence A _≈₁_) (eB : IsEquivalence B _≈₂_) where
infix 4 _≈_
_≈_ : A × B A × B Set a
(a₁ , b₁) (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
ProdEquivalence : IsEquivalence (A × B) _≈_
ProdEquivalence = record
{ ≈-refl = λ {p}
( IsEquivalence.≈-refl eA
, IsEquivalence.≈-refl eB
)
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂)
( IsEquivalence.≈-sym eA a₁≈a₂
, IsEquivalence.≈-sym eB b₁≈b₂
)
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃)
( IsEquivalence.≈-trans eA a₁≈a₂ a₂≈a₃
, IsEquivalence.≈-trans eB b₁≈b₂ b₂≈b₃
)
}
module ForMap {a b} (A : Set a) (B : Set b)
(≡-dec-A : Decidable (_≡_ {a} {A}))
(_≈₂_ : B B Set b)
(eB : IsEquivalence B _≈₂_) where
open import Lattice.Map A B ≡-dec-A using (Map; lift; subset)
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
open IsEquivalence eB renaming
( ≈-refl to ≈₂-refl
; ≈-sym to ≈₂-sym
; ≈-trans to ≈₂-trans
)
_≈_ : Map Map Set (Agda.Primitive._⊔_ a b)
_≈_ = lift _≈₂_
_⊆_ : Map Map Set (Agda.Primitive._⊔_ a b)
_⊆_ = subset _≈₂_
private
⊆-refl : (m : Map) m m
⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
⊆-trans : (m₁ m₂ m₃ : Map) m₁ m₂ m₂ m₃ m₁ m₃
⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
let
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
LiftEquivalence : IsEquivalence Map _≈_
LiftEquivalence = record
{ ≈-refl = λ {m} (⊆-refl m , ⊆-refl m)
; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₁ , m₁⊆m₂)
; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂)
( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃
, ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁
)
}