2024-04-13 18:39:38 -07:00
|
|
|
|
module Language.Graphs where
|
|
|
|
|
|
2024-04-25 23:10:41 -07:00
|
|
|
|
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
|
2024-04-13 18:39:38 -07:00
|
|
|
|
|
2024-04-25 23:10:41 -07:00
|
|
|
|
open import Data.Fin as Fin using (Fin; suc; zero)
|
2024-04-13 18:39:38 -07:00
|
|
|
|
open import Data.Fin.Properties as FinProp using (suc-injective)
|
|
|
|
|
open import Data.List as List using (List; []; _∷_)
|
|
|
|
|
open import Data.List.Membership.Propositional as ListMem using ()
|
|
|
|
|
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
|
|
|
|
open import Data.Nat as Nat using (ℕ; suc)
|
|
|
|
|
open import Data.Nat.Properties using (+-assoc; +-comm)
|
|
|
|
|
open import Data.Product using (_×_; Σ; _,_)
|
|
|
|
|
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
|
2024-04-20 19:31:47 -07:00
|
|
|
|
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
|
|
|
|
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
|
2024-04-13 18:39:38 -07:00
|
|
|
|
|
|
|
|
|
open import Lattice
|
2024-04-25 23:10:41 -07:00
|
|
|
|
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
|
2024-04-13 18:39:38 -07:00
|
|
|
|
|
|
|
|
|
record Graph : Set where
|
|
|
|
|
constructor MkGraph
|
|
|
|
|
field
|
|
|
|
|
size : ℕ
|
|
|
|
|
|
|
|
|
|
Index : Set
|
|
|
|
|
Index = Fin size
|
|
|
|
|
|
|
|
|
|
Edge : Set
|
|
|
|
|
Edge = Index × Index
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
nodes : Vec (List BasicStmt) size
|
|
|
|
|
edges : List Edge
|
2024-04-25 23:10:41 -07:00
|
|
|
|
inputs : List Index
|
|
|
|
|
outputs : List Index
|
|
|
|
|
|
|
|
|
|
_↑ˡ_ : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
|
|
|
|
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
|
|
|
|
|
|
|
|
|
|
_↑ʳ_ : ∀ {m} n → (Fin m × Fin m) → Fin (n Nat.+ m) × Fin (n Nat.+ m)
|
|
|
|
|
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
|
|
|
|
|
|
|
|
|
|
_↑ˡⁱ_ : ∀ {n} → List (Fin n) → ∀ m → List (Fin (n Nat.+ m))
|
|
|
|
|
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
|
|
|
|
|
|
|
|
|
|
_↑ʳⁱ_ : ∀ {m} n → List (Fin m) → List (Fin (n Nat.+ m))
|
|
|
|
|
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
|
|
|
|
|
|
|
|
|
|
_↑ˡᵉ_ : ∀ {n} → List (Fin n × Fin n) → ∀ m → List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
|
|
|
|
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
|
|
|
|
|
|
|
|
|
|
_↑ʳᵉ_ : ∀ {m} n → List (Fin m × Fin m) → List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
|
|
|
|
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
|
|
|
|
|
|
|
|
|
|
infixl 5 _∙_
|
|
|
|
|
_∙_ : Graph → Graph → Graph
|
|
|
|
|
_∙_ g₁ g₂ = record
|
|
|
|
|
{ size = Graph.size g₁ Nat.+ Graph.size g₂
|
|
|
|
|
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
|
|
|
|
|
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
|
|
|
|
|
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
|
|
|
|
|
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
|
|
|
|
|
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
|
|
|
|
|
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
|
|
|
|
|
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
|
|
|
|
|
}
|
2024-04-13 18:39:38 -07:00
|
|
|
|
|
2024-04-25 23:10:41 -07:00
|
|
|
|
infixl 5 _↦_
|
|
|
|
|
_↦_ : Graph → Graph → Graph
|
|
|
|
|
_↦_ g₁ g₂ = record
|
|
|
|
|
{ size = Graph.size g₁ Nat.+ Graph.size g₂
|
|
|
|
|
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
|
|
|
|
|
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
|
|
|
|
|
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
|
|
|
|
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
|
|
|
|
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
|
|
|
|
|
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
|
|
|
|
|
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
|
2024-04-13 18:39:38 -07:00
|
|
|
|
}
|
|
|
|
|
|
2024-04-25 23:10:41 -07:00
|
|
|
|
loop : Graph → Graph
|
|
|
|
|
loop g = record
|
|
|
|
|
{ size = Graph.size g
|
|
|
|
|
; nodes = Graph.nodes g
|
|
|
|
|
; edges = Graph.edges g List.++
|
|
|
|
|
List.cartesianProduct (Graph.outputs g) (Graph.inputs g)
|
|
|
|
|
; inputs = Graph.inputs g
|
|
|
|
|
; outputs = Graph.outputs g
|
|
|
|
|
}
|
2024-04-13 18:39:38 -07:00
|
|
|
|
|
|
|
|
|
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
|
|
|
|
_[_] g idx = lookup (Graph.nodes g) idx
|
|
|
|
|
|
2024-04-25 23:10:41 -07:00
|
|
|
|
singleton : List BasicStmt → Graph
|
|
|
|
|
singleton bss = record
|
|
|
|
|
{ size = 1
|
|
|
|
|
; nodes = bss ∷ []
|
|
|
|
|
; edges = []
|
|
|
|
|
; inputs = zero ∷ []
|
|
|
|
|
; outputs = zero ∷ []
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
buildCfg : Stmt → Graph
|
|
|
|
|
buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ [])
|
|
|
|
|
buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂
|
|
|
|
|
buildCfg (if _ then s₁ else s₂) = singleton [] ↦ (buildCfg s₁ ∙ buildCfg s₂) ↦ singleton []
|
|
|
|
|
buildCfg (while _ repeat s) = loop (buildCfg s ↦ singleton [])
|
|
|
|
|
|
|
|
|
|
-- record _⊆_ (g₁ g₂ : Graph) : Set where
|
|
|
|
|
-- constructor Mk-⊆
|
|
|
|
|
-- field
|
|
|
|
|
-- n : ℕ
|
|
|
|
|
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
|
|
|
|
|
-- newNodes : Vec (List BasicStmt) n
|
|
|
|
|
-- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
|
|
|
|
|
-- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
|
|
|
|
-- e ListMem.∈ (Graph.edges g₁) →
|
|
|
|
|
-- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
|
|
|
|
--
|
|
|
|
|
-- private
|
|
|
|
|
-- castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
|
|
|
|
|
-- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
|
|
|
|
|
--
|
|
|
|
|
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
|
|
|
|
|
-- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
|
|
|
|
|
-- ↑ˡ-assoc zero p = refl
|
|
|
|
|
-- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
|
|
|
|
|
--
|
|
|
|
|
-- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
|
|
|
|
|
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
|
|
|
|
|
-- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
|
|
|
|
|
-- rewrite ↑ˡ-assoc idx₁ p
|
|
|
|
|
-- rewrite ↑ˡ-assoc idx₂ p = refl
|
|
|
|
|
--
|
|
|
|
|
-- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
|
|
|
|
|
-- f ≡ Fin.cast p (f ↑ˡ 0)
|
|
|
|
|
-- ↑ˡ-identityʳ zero p = refl
|
|
|
|
|
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
|
|
|
|
|
--
|
|
|
|
|
-- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
|
|
|
|
|
-- e ≡ castᵉ p (↑ˡ-Edge e 0)
|
|
|
|
|
-- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
|
|
|
|
|
-- rewrite sym (↑ˡ-identityʳ idx₁ p)
|
|
|
|
|
-- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
|
|
|
|
|
--
|
|
|
|
|
-- cast∈⇒∈subst : ∀ {n m : ℕ} (p : n ≡ m) (q : m ≡ n)
|
|
|
|
|
-- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
|
|
|
|
|
-- castᵉ p e ListMem.∈ es →
|
|
|
|
|
-- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
|
|
|
|
|
-- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
|
|
|
|
|
-- rewrite FinProp.cast-is-id refl idx₁
|
|
|
|
|
-- rewrite FinProp.cast-is-id refl idx₂ = e∈es
|
|
|
|
|
--
|
|
|
|
|
-- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
|
|
|
|
-- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
|
|
|
|
|
-- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
|
|
|
|
|
-- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
|
|
|
|
|
-- rewrite cast-is-id refl ns₂
|
|
|
|
|
-- rewrite cast-is-id refl ns₃
|
|
|
|
|
-- with refl ← nsg₂≡nsg₁++newNodes₁
|
|
|
|
|
-- with refl ← nsg₃≡nsg₂++newNodes₂ =
|
|
|
|
|
-- record
|
|
|
|
|
-- { n = n₁ Nat.+ n₂
|
|
|
|
|
-- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
|
|
|
|
|
-- ; newNodes = newNodes₁ ++ newNodes₂
|
|
|
|
|
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
|
|
|
|
|
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
|
|
|
|
|
-- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
|
|
|
|
|
-- (subst (λ e' → e' ListMem.∈ es₃)
|
|
|
|
|
-- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
|
|
|
|
|
-- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
|
|
|
|
|
-- }
|
|
|
|
|
--
|
|
|
|
|
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
|
|
|
|
|
--
|
|
|
|
|
-- instance
|
|
|
|
|
-- IndexRelaxable : Relaxable Graph.Index
|
|
|
|
|
-- IndexRelaxable = record
|
|
|
|
|
-- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
|
|
|
|
|
-- }
|
|
|
|
|
--
|
|
|
|
|
-- EdgeRelaxable : Relaxable Graph.Edge
|
|
|
|
|
-- EdgeRelaxable = record
|
|
|
|
|
-- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
|
|
|
|
|
-- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
|
|
|
|
|
-- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
|
|
|
|
|
-- )
|
|
|
|
|
-- }
|
|
|
|
|
--
|
|
|
|
|
-- open Relaxable {{...}}
|
|
|
|
|
--
|
|
|
|
|
-- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
|
|
|
|
-- pushBasicBlock bss g =
|
|
|
|
|
-- ( record
|
|
|
|
|
-- { size = Graph.size g Nat.+ 1
|
|
|
|
|
-- ; nodes = Graph.nodes g ++ (bss ∷ [])
|
|
|
|
|
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
|
|
|
|
-- }
|
|
|
|
|
-- , ( Graph.size g ↑ʳ zero
|
|
|
|
|
-- , record
|
|
|
|
|
-- { n = 1
|
|
|
|
|
-- ; sg₂≡sg₁+n = refl
|
|
|
|
|
-- ; newNodes = (bss ∷ [])
|
|
|
|
|
-- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
|
|
|
|
|
-- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
|
|
|
|
|
-- }
|
|
|
|
|
-- )
|
|
|
|
|
-- )
|
|
|
|
|
--
|
|
|
|
|
-- pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
|
|
|
|
-- pushEmptyBlock = pushBasicBlock []
|
|
|
|
|
--
|
|
|
|
|
-- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
|
|
|
|
-- addEdges (MkGraph s ns es) es' =
|
|
|
|
|
-- ( record
|
|
|
|
|
-- { size = s
|
|
|
|
|
-- ; nodes = ns
|
|
|
|
|
-- ; edges = es' List.++ es
|
|
|
|
|
-- }
|
|
|
|
|
-- , record
|
|
|
|
|
-- { n = 0
|
|
|
|
|
-- ; sg₂≡sg₁+n = +-comm 0 s
|
|
|
|
|
-- ; newNodes = []
|
|
|
|
|
-- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
|
|
|
|
|
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
|
|
|
|
|
-- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
|
|
|
|
|
-- (subst (λ e' → e' ListMem.∈ _)
|
|
|
|
|
-- (↑ˡ-Edge-identityʳ e (+-comm s 0))
|
|
|
|
|
-- (ListMemProp.∈-++⁺ʳ es' e∈es))
|
|
|
|
|
-- }
|
|
|
|
|
-- )
|
|
|
|
|
--
|
|
|
|
|
-- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
|
|
|
|
|
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
|
|
|
|
|
-- buildCfg (s₁ then s₂) =
|
|
|
|
|
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
|
|
|
|
|
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
|
|
|
|
|
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
|
|
|
|
|
-- buildCfg (if _ then s₁ else s₂) =
|
|
|
|
|
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
|
|
|
|
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
|
|
|
|
|
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
|
|
|
|
|
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
|
|
|
|
|
-- buildCfg (while _ repeat s) =
|
|
|
|
|
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
|
|
|
|
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
|
|
|
|
|
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
|
|
|
|
|
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
|