agda-spa/Language/Graphs.agda

249 lines
11 KiB
Agda
Raw Normal View History

module Language.Graphs where
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.Nat as Nat using (; suc)
open import Data.Nat.Properties using (+-assoc; +-comm)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
record Graph : Set where
constructor MkGraph
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
inputs : List Index
outputs : List Index
_↑ˡ_ : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
_↑ʳ_ : {m} n (Fin m × Fin m) Fin (n Nat.+ m) × Fin (n Nat.+ m)
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
_↑ˡⁱ_ : {n} List (Fin n) m List (Fin (n Nat.+ m))
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
_↑ʳⁱ_ : {m} n List (Fin m) List (Fin (n Nat.+ m))
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
_↑ˡᵉ_ : {n} List (Fin n × Fin n) m List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
_↑ʳᵉ_ : {m} n List (Fin m × Fin m) List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
infixl 5 _∙_
_∙_ : Graph Graph Graph
_∙_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
}
infixl 5 _↦_
_↦_ : Graph Graph Graph
_↦_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
}
loop : Graph Graph
loop g = record
{ size = Graph.size g
; nodes = Graph.nodes g
; edges = Graph.edges g List.++
List.cartesianProduct (Graph.outputs g) (Graph.inputs g)
; inputs = Graph.inputs g
; outputs = Graph.outputs g
}
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
singleton : List BasicStmt Graph
singleton bss = record
{ size = 1
; nodes = bss []
; edges = []
; inputs = zero []
; outputs = zero []
}
buildCfg : Stmt Graph
buildCfg bs₁ = singleton (bs₁ [])
buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s singleton [])
-- record _⊆_ (g₁ g₂ : Graph) : Set where
-- constructor Mk-⊆
-- field
-- n :
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
-- newNodes : Vec (List BasicStmt) n
-- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
-- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
-- e ListMem.∈ (Graph.edges g₁) →
-- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
--
-- private
-- castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
-- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
--
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
-- ↑ˡ-assoc zero p = refl
-- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
--
-- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
-- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
-- rewrite ↑ˡ-assoc idx₁ p
-- rewrite ↑ˡ-assoc idx₂ p = refl
--
-- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
-- f ≡ Fin.cast p (f ↑ˡ 0)
-- ↑ˡ-identityʳ zero p = refl
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
--
-- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
-- e ≡ castᵉ p (↑ˡ-Edge e 0)
-- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
-- rewrite sym (↑ˡ-identityʳ idx₁ p)
-- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
--
-- cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
-- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
-- castᵉ p e ListMem.∈ es →
-- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
-- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
-- rewrite FinProp.cast-is-id refl idx₁
-- rewrite FinProp.cast-is-id refl idx₂ = e∈es
--
-- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
-- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
-- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
-- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
-- rewrite cast-is-id refl ns₂
-- rewrite cast-is-id refl ns₃
-- with refl ← nsg₂≡nsg₁++newNodes₁
-- with refl ← nsg₃≡nsg₂++newNodes₂ =
-- record
-- { n = n₁ Nat.+ n₂
-- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
-- ; newNodes = newNodes₁ ++ newNodes₂
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
-- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
-- (subst (λ e' → e' ListMem.∈ es₃)
-- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
-- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
-- }
--
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
--
-- instance
-- IndexRelaxable : Relaxable Graph.Index
-- IndexRelaxable = record
-- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
-- }
--
-- EdgeRelaxable : Relaxable Graph.Edge
-- EdgeRelaxable = record
-- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
-- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
-- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
-- )
-- }
--
-- open Relaxable {{...}}
--
-- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
-- pushBasicBlock bss g =
-- ( record
-- { size = Graph.size g Nat.+ 1
-- ; nodes = Graph.nodes g ++ (bss ∷ [])
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
-- }
-- , ( Graph.size g ↑ʳ zero
-- , record
-- { n = 1
-- ; sg₂≡sg₁+n = refl
-- ; newNodes = (bss ∷ [])
-- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
-- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
-- }
-- )
-- )
--
-- pushEmptyBlock : MonotonicGraphFunction Graph.Index
-- pushEmptyBlock = pushBasicBlock []
--
-- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
-- addEdges (MkGraph s ns es) es' =
-- ( record
-- { size = s
-- ; nodes = ns
-- ; edges = es' List.++ es
-- }
-- , record
-- { n = 0
-- ; sg₂≡sg₁+n = +-comm 0 s
-- ; newNodes = []
-- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
-- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
-- (subst (λ e' → e' ListMem.∈ _)
-- (↑ˡ-Edge-identityʳ e (+-comm s 0))
-- (ListMemProp.∈-++⁺ʳ es' e∈es))
-- }
-- )
--
-- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
-- buildCfg (s₁ then s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
-- buildCfg (if _ then s₁ else s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
-- buildCfg (while _ repeat s) =
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })