2024-03-09 14:00:10 -08:00
|
|
|
module Analysis.Sign where
|
|
|
|
|
|
|
|
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
2024-03-09 23:06:47 -08:00
|
|
|
open import Data.Product using (proj₁)
|
|
|
|
open import Data.List using (foldr)
|
2024-03-09 14:00:10 -08:00
|
|
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
|
|
|
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
|
|
|
|
|
|
|
open import Language
|
|
|
|
open import Lattice
|
2024-03-09 23:06:47 -08:00
|
|
|
open import Utils using (Pairwise)
|
2024-03-09 21:46:15 -08:00
|
|
|
import Lattice.Bundles.FiniteValueMap
|
|
|
|
|
|
|
|
private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice
|
2024-03-09 14:00:10 -08:00
|
|
|
|
|
|
|
data Sign : Set where
|
|
|
|
+ : Sign
|
|
|
|
- : Sign
|
|
|
|
0ˢ : Sign
|
|
|
|
|
|
|
|
-- g for siGn; s is used for strings and i is not very descriptive.
|
|
|
|
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
|
|
|
_≟ᵍ_ + + = yes refl
|
|
|
|
_≟ᵍ_ + - = no (λ ())
|
|
|
|
_≟ᵍ_ + 0ˢ = no (λ ())
|
|
|
|
_≟ᵍ_ - + = no (λ ())
|
|
|
|
_≟ᵍ_ - - = yes refl
|
|
|
|
_≟ᵍ_ - 0ˢ = no (λ ())
|
|
|
|
_≟ᵍ_ 0ˢ + = no (λ ())
|
|
|
|
_≟ᵍ_ 0ˢ - = no (λ ())
|
|
|
|
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
|
|
|
|
|
|
|
module _ (prog : Program) where
|
|
|
|
open Program prog
|
|
|
|
|
|
|
|
-- embelish 'sign' with a top and bottom element.
|
2024-03-09 23:06:47 -08:00
|
|
|
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
|
|
|
using ()
|
|
|
|
renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
|
2024-03-09 14:00:10 -08:00
|
|
|
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
|
|
|
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
|
|
|
|
|
|
|
|
|
|
|
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
|
|
|
|
|
|
|
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
2024-03-09 21:46:15 -08:00
|
|
|
open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
2024-03-09 23:06:47 -08:00
|
|
|
using ()
|
2024-03-09 21:46:15 -08:00
|
|
|
renaming
|
|
|
|
( finiteHeightLattice to finiteHeightLatticeᵛ
|
|
|
|
; FiniteMap to VariableSigns
|
|
|
|
; _≈_ to _≈ᵛ_
|
2024-03-09 23:06:47 -08:00
|
|
|
; _⊔_ to _⊔ᵛ_
|
2024-03-09 21:46:15 -08:00
|
|
|
; ≈-dec to ≈ᵛ-dec
|
|
|
|
)
|
2024-03-09 23:06:47 -08:00
|
|
|
open FiniteHeightLattice finiteHeightLatticeᵛ
|
|
|
|
using ()
|
|
|
|
renaming
|
|
|
|
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
|
|
|
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
|
|
|
; _≼_ to _≼ᵛ_
|
|
|
|
; joinSemilattice to joinSemilatticeᵛ
|
|
|
|
; ⊔-idemp to ⊔ᵛ-idemp
|
|
|
|
)
|
|
|
|
|
|
|
|
⊥ᵛ = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight finiteHeightLatticeᵛ)))
|
2024-03-09 14:00:10 -08:00
|
|
|
|
|
|
|
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
|
2024-03-09 23:06:47 -08:00
|
|
|
module StateVariablesFiniteMap = FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
|
|
|
|
open StateVariablesFiniteMap
|
|
|
|
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
|
2024-03-09 21:46:15 -08:00
|
|
|
renaming
|
|
|
|
( finiteHeightLattice to finiteHeightLatticeᵐ
|
|
|
|
; FiniteMap to StateVariables
|
2024-03-09 23:06:47 -08:00
|
|
|
; isLattice to isLatticeᵐ
|
|
|
|
)
|
|
|
|
open FiniteHeightLattice finiteHeightLatticeᵐ
|
|
|
|
using ()
|
|
|
|
renaming (_≼_ to _≼ᵐ_)
|
|
|
|
|
|
|
|
-- build up the 'join' function, which follows from Exercise 4.26's
|
|
|
|
--
|
|
|
|
-- L₁ → (A → L₂)
|
|
|
|
--
|
|
|
|
-- Construction, with L₁ = (A → L₂), and f = id
|
|
|
|
|
|
|
|
joinForKey : State → StateVariables → VariableSigns
|
|
|
|
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
|
|
|
|
|
|
|
-- The per-key join is made up of map key accesses (which are monotonic)
|
|
|
|
-- and folds using the join operation (also monotonic)
|
|
|
|
|
|
|
|
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
|
|
|
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
|
|
|
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
|
|
|
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
|
|
|
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
|
|
|
|
|
|
|
-- The name f' comes from the formulation of Exercise 4.26.
|
|
|
|
|
|
|
|
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
|
|
|
renaming
|
|
|
|
( f' to joinAll
|
|
|
|
; f'-Monotonic to joinAll-Mono
|
2024-03-09 21:46:15 -08:00
|
|
|
)
|