Prove that the inputs to wrap are empty
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
e0248397b7
commit
04bafb2d55
@ -6,23 +6,84 @@ open import Language.Graphs
|
||||
open import Language.Traces
|
||||
|
||||
open import Data.Fin as Fin using (suc; zero)
|
||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||
open import Data.List as List using (List; _∷_; [])
|
||||
open import Data.List.Properties using (filter-none)
|
||||
open import Data.List.Relation.Unary.Any using (here; there)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate)
|
||||
open import Data.List.Membership.Propositional as ListMem using ()
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
open import Data.Product using (Σ; _,_; _×_)
|
||||
open import Data.Nat as Nat using ()
|
||||
open import Data.Product using (Σ; _,_; _×_; proj₂)
|
||||
open import Data.Product.Properties as ProdProp using ()
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Vec as Vec using (_∷_)
|
||||
open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
|
||||
open import Relation.Nullary using (¬_)
|
||||
|
||||
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈)
|
||||
|
||||
wrap-input : ∀ (g : Graph) → Σ (Graph.Index (wrap g)) (λ idx → Graph.inputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-input g = (_ , refl)
|
||||
-- All of the below helpers are to reason about what edges aren't included
|
||||
-- when combinings graphs. The currenty most important use for this is proving
|
||||
-- that the entry node has no incoming edges.
|
||||
--
|
||||
-- -------------- Begin ugly code to make this work ----------------
|
||||
↑-≢ : ∀ {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) → ¬ (f₁ Fin.↑ˡ m) ≡ (n Fin.↑ʳ f₂)
|
||||
↑-≢ zero f₂ ()
|
||||
↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂)
|
||||
|
||||
wrap-output : ∀ (g : Graph) → Σ (Graph.Index (wrap g)) (λ idx → Graph.outputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-output g = (_ , refl)
|
||||
idx→f∉↑ʳᵉ : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂)
|
||||
idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) ∷ es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂)
|
||||
idx→f∉↑ʳᵉ idx f (_ ∷ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂'
|
||||
|
||||
idx→f∉pair : ∀ {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂))
|
||||
idx→f∉pair idx idx' f [] ()
|
||||
idx→f∉pair idx idx' f (input ∷ inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input)
|
||||
idx→f∉pair idx idx' f (_ ∷ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂'
|
||||
|
||||
idx→f∉cart : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂))
|
||||
idx→f∉cart idx f [] inputs₂ ()
|
||||
idx→f∉cart {n} {m} idx f (output ∷ outputs₁') inputs₂ idx,f∈pair++cart
|
||||
with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart
|
||||
... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair
|
||||
... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart
|
||||
|
||||
help : let g₁ = singleton [] in
|
||||
∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ ↦ g₂)) →
|
||||
¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
||||
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))
|
||||
help g₂ idx₁ idx idx,idx₁∈g
|
||||
with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g
|
||||
... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂
|
||||
... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart
|
||||
|
||||
helpAll : let g₁ = singleton [] in
|
||||
∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) →
|
||||
All (λ idx → ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
||||
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ ↦ g₂))
|
||||
helpAll g₂ idx₁ = tabulate (λ {idx} _ → help g₂ idx₁ idx)
|
||||
|
||||
module _ (g : Graph) where
|
||||
wrap-preds-∅ : (idx : Graph.Index (wrap g)) →
|
||||
idx ListMem.∈ Graph.inputs (wrap g) → predecessors (wrap g) idx ≡ []
|
||||
wrap-preds-∅ zero (here refl) =
|
||||
filter-none (λ idx' → (idx' , zero) ∈?
|
||||
(Graph.edges (wrap g)))
|
||||
(helpAll (g ↦ singleton []) zero)
|
||||
where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_)
|
||||
-- -------------- End ugly code to make this work ----------------
|
||||
|
||||
|
||||
module _ (g : Graph) where
|
||||
wrap-input : Σ (Graph.Index (wrap g)) (λ idx → Graph.inputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-input = (_ , refl)
|
||||
|
||||
wrap-output : Σ (Graph.Index (wrap g)) (λ idx → Graph.outputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-output = (_ , refl)
|
||||
|
||||
Trace-∙ˡ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ →
|
||||
|
Loading…
Reference in New Issue
Block a user