Prove that the inputs to wrap are empty

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-05-10 21:25:40 -07:00
parent e0248397b7
commit 04bafb2d55

View File

@ -6,23 +6,84 @@ open import Language.Graphs
open import Language.Traces open import Language.Traces
open import Data.Fin as Fin using (suc; zero) open import Data.Fin as Fin using (suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; _∷_; []) open import Data.List as List using (List; _∷_; [])
open import Data.List.Properties using (filter-none)
open import Data.List.Relation.Unary.Any using (here; there) open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate)
open import Data.List.Membership.Propositional as ListMem using () open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using () open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.Product using (Σ; _,_; _×_) open import Data.Nat as Nat using ()
open import Data.Product using (Σ; _,_; _×_; proj₂)
open import Data.Product.Properties as ProdProp using ()
open import Data.Sum using (inj₁; inj₂)
open import Data.Vec as Vec using (_∷_) open import Data.Vec as Vec using (_∷_)
open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ) open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ)
open import Function using (_∘_) open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
open import Relation.Nullary using (¬_)
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈) open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈)
wrap-input : (g : Graph) Σ (Graph.Index (wrap g)) (λ idx Graph.inputs (wrap g) idx []) -- All of the below helpers are to reason about what edges aren't included
wrap-input g = (_ , refl) -- when combinings graphs. The currenty most important use for this is proving
-- that the entry node has no incoming edges.
--
-- -------------- Begin ugly code to make this work ----------------
↑-≢ : {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) ¬ (f₁ Fin.↑ˡ m) (n Fin.↑ʳ f₂)
↑-≢ zero f₂ ()
↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂)
wrap-output : (g : Graph) Σ (Graph.Index (wrap g)) (λ idx Graph.outputs (wrap g) idx []) idx→f∉↑ʳᵉ : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂)
wrap-output g = (_ , refl) idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂)
idx→f∉↑ʳᵉ idx f (_ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂'
idx→f∉pair : {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂))
idx→f∉pair idx idx' f [] ()
idx→f∉pair idx idx' f (input inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input)
idx→f∉pair idx idx' f (_ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂'
idx→f∉cart : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂))
idx→f∉cart idx f [] inputs₂ ()
idx→f∉cart {n} {m} idx f (output outputs₁') inputs₂ idx,f∈pair++cart
with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart
... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair
... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart
help : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ g₂))
¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))
help g₂ idx₁ idx idx,idx₁∈g
with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g
... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂
... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart
helpAll : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁)
All (λ idx ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ g₂))
helpAll g₂ idx₁ = tabulate (λ {idx} _ help g₂ idx₁ idx)
module _ (g : Graph) where
wrap-preds-∅ : (idx : Graph.Index (wrap g))
idx ListMem.∈ Graph.inputs (wrap g) predecessors (wrap g) idx []
wrap-preds-∅ zero (here refl) =
filter-none (λ idx' (idx' , zero) ∈?
(Graph.edges (wrap g)))
(helpAll (g singleton []) zero)
where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_)
-- -------------- End ugly code to make this work ----------------
module _ (g : Graph) where
wrap-input : Σ (Graph.Index (wrap g)) (λ idx Graph.inputs (wrap g) idx [])
wrap-input = (_ , refl)
wrap-output : Σ (Graph.Index (wrap g)) (λ idx Graph.outputs (wrap g) idx [])
wrap-output = (_ , refl)
Trace-∙ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} Trace-∙ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env}
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ Trace {g₁} idx₁ idx₂ ρ₁ ρ₂