Add more properties of update(s) and start work on provenance
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
66dfe14207
commit
1780cdbda4
116
Map.agda
116
Map.agda
|
@ -283,6 +283,9 @@ private module ImplInsert (f : B → B → B) where
|
||||||
... | yes _ = (k' , f v v') ∷ xs
|
... | yes _ = (k' , f v v') ∷ xs
|
||||||
... | no _ = (k' , v') ∷ update k v xs
|
... | no _ = (k' , v') ∷ update k v xs
|
||||||
|
|
||||||
|
updates : List (A × B) → List (A × B) → List (A × B)
|
||||||
|
updates l₁ l₂ = foldr update l₂ l₁
|
||||||
|
|
||||||
restrict : List (A × B) → List (A × B) → List (A × B)
|
restrict : List (A × B) → List (A × B) → List (A × B)
|
||||||
restrict l [] = []
|
restrict l [] = []
|
||||||
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
||||||
|
@ -290,7 +293,7 @@ private module ImplInsert (f : B → B → B) where
|
||||||
... | no _ = restrict l xs
|
... | no _ = restrict l xs
|
||||||
|
|
||||||
intersect : List (A × B) → List (A × B) → List (A × B)
|
intersect : List (A × B) → List (A × B) → List (A × B)
|
||||||
intersect l₁ l₂ = restrict l₁ (foldr update l₂ l₁)
|
intersect l₁ l₂ = restrict l₁ (updates l₁ l₂)
|
||||||
|
|
||||||
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
keys l ≡ keys (update k v l)
|
keys l ≡ keys (update k v l)
|
||||||
|
@ -305,7 +308,7 @@ private module ImplInsert (f : B → B → B) where
|
||||||
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
||||||
|
|
||||||
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||||||
Unique (keys l₂) → Unique (keys (foldr update l₂ l₁))
|
Unique (keys l₂) → Unique (keys (updates l₁ l₂))
|
||||||
updates-preserve-Unique {[]} u = u
|
updates-preserve-Unique {[]} u = u
|
||||||
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
||||||
|
|
||||||
|
@ -329,21 +332,64 @@ private module ImplInsert (f : B → B → B) where
|
||||||
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
||||||
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
||||||
|
|
||||||
restrict-needs-both : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||||||
(k , v) ∈ restrict l₁ l₂ → (k ∈k l₁ × (k , v) ∈ l₂)
|
k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂)
|
||||||
restrict-needs-both {k} {v} {l₁} {[]} ()
|
restrict-needs-both {k} {l₁} {[]} ()
|
||||||
restrict-needs-both {k} {v} {l₁} {(k' , v') ∷ xs} k,v∈l₁l₂
|
restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂
|
||||||
with ∈k-dec k' l₁ | k,v∈l₁l₂
|
with ∈k-dec k' l₁ | k∈l₁l₂
|
||||||
... | yes k'∈kl₁ | here k,v≡k',v'
|
... | yes k'∈kl₁ | here k≡k'
|
||||||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
rewrite k≡k' =
|
||||||
(k'∈kl₁ , here refl)
|
(k'∈kl₁ , here refl)
|
||||||
... | yes _ | there k,v∈l₁xs =
|
... | yes _ | there k∈l₁xs =
|
||||||
let (k∈kl₁ , k,v∈xs) = restrict-needs-both k,v∈l₁xs
|
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||||||
in (k∈kl₁ , there k,v∈xs)
|
in (k∈kl₁ , there k∈kxs)
|
||||||
... | no k'∉kl₁ | k,v∈l₁xs =
|
... | no k'∉kl₁ | k∈l₁xs =
|
||||||
let (k∈kl₁ , k,v∈xs) = restrict-needs-both k,v∈l₁xs
|
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
||||||
in (k∈kl₁ , there k,v∈xs)
|
in (k∈kl₁ , there k∈kxs)
|
||||||
|
|
||||||
|
update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||||||
|
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l
|
||||||
|
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'')
|
||||||
|
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
|
||||||
|
with ≡-dec-A k' k''
|
||||||
|
... | yes k'≡k'' = absurd (k≢k' (sym k'≡k''))
|
||||||
|
... | no _ = here refl
|
||||||
|
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs)
|
||||||
|
with ≡-dec-A k' k''
|
||||||
|
... | yes _ = there k,v∈xs
|
||||||
|
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
|
||||||
|
|
||||||
|
updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||||||
|
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂
|
||||||
|
updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂
|
||||||
|
updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ =
|
||||||
|
update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂)
|
||||||
|
|
||||||
|
update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
||||||
|
Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l
|
||||||
|
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'')
|
||||||
|
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
|
||||||
|
with ≡-dec-A k' k'
|
||||||
|
... | yes _ = here refl
|
||||||
|
... | no k'≢k' = absurd (k'≢k' refl)
|
||||||
|
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs)
|
||||||
|
with ≡-dec-A k k'
|
||||||
|
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
|
||||||
|
... | no _ = there (update-combines uxs k,v∈xs)
|
||||||
|
|
||||||
|
updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||||||
|
Unique (keys l₁) → Unique (keys l₂) →
|
||||||
|
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂
|
||||||
|
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂
|
||||||
|
rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' =
|
||||||
|
update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂)
|
||||||
|
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ =
|
||||||
|
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
|
||||||
|
where
|
||||||
|
k≢k' : ¬ k ≡ k'
|
||||||
|
k≢k' with ≡-dec-A k k'
|
||||||
|
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
|
||||||
|
... | no k≢k' = k≢k'
|
||||||
|
|
||||||
|
|
||||||
Map : Set (a ⊔ b)
|
Map : Set (a ⊔ b)
|
||||||
|
@ -361,6 +407,7 @@ Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,
|
||||||
data Expr : Set (a ⊔ b) where
|
data Expr : Set (a ⊔ b) where
|
||||||
`_ : Map → Expr
|
`_ : Map → Expr
|
||||||
_∪_ : Expr → Expr → Expr
|
_∪_ : Expr → Expr → Expr
|
||||||
|
_∩_ : Expr → Expr → Expr
|
||||||
|
|
||||||
module _ (f : B → B → B) where
|
module _ (f : B → B → B) where
|
||||||
open ImplInsert f renaming
|
open ImplInsert f renaming
|
||||||
|
@ -375,15 +422,29 @@ module _ (f : B → B → B) where
|
||||||
intersect : Map → Map → Map
|
intersect : Map → Map → Map
|
||||||
intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
|
intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
|
||||||
|
|
||||||
|
module _ (fUnion : B → B → B) (fIntersect : B → B → B) where
|
||||||
|
open ImplInsert fUnion using
|
||||||
|
( union-combines
|
||||||
|
; union-preserves-∈₁
|
||||||
|
; union-preserves-∈₂
|
||||||
|
; union-preserves-∉
|
||||||
|
)
|
||||||
|
|
||||||
|
open ImplInsert fIntersect using
|
||||||
|
( restrict-needs-both
|
||||||
|
; updates
|
||||||
|
)
|
||||||
|
|
||||||
⟦_⟧ : Expr -> Map
|
⟦_⟧ : Expr -> Map
|
||||||
⟦ ` m ⟧ = m
|
⟦ ` m ⟧ = m
|
||||||
⟦ e₁ ∪ e₂ ⟧ = union ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
⟦ e₁ ∪ e₂ ⟧ = union fUnion ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
||||||
|
⟦ e₁ ∩ e₂ ⟧ = intersect fIntersect ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
||||||
|
|
||||||
data Provenance (k : A) : B → Expr → Set (a ⊔ b) where
|
data Provenance (k : A) : B → Expr → Set (a ⊔ b) where
|
||||||
single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m)
|
single : ∀ {v : B} {m : Map} → (k , v) ∈ m → Provenance k v (` m)
|
||||||
in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂)
|
in₁ : ∀ {v : B} {e₁ e₂ : Expr} → Provenance k v e₁ → ¬ k ∈k ⟦ e₂ ⟧ → Provenance k v (e₁ ∪ e₂)
|
||||||
in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂)
|
in₂ : ∀ {v : B} {e₁ e₂ : Expr} → ¬ k ∈k ⟦ e₁ ⟧ → Provenance k v e₂ → Provenance k v (e₁ ∪ e₂)
|
||||||
bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (f v₁ v₂) (e₁ ∪ e₂)
|
bothᵘ : ∀ {v₁ v₂ : B} {e₁ e₂ : Expr} → Provenance k v₁ e₁ → Provenance k v₂ e₂ → Provenance k (fUnion v₁ v₂) (e₁ ∪ e₂)
|
||||||
|
|
||||||
Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧))
|
Expr-Provenance : ∀ (k : A) (e : Expr) → k ∈k ⟦ e ⟧ → Σ B (λ v → (Provenance k v e × (k , v) ∈ ⟦ e ⟧))
|
||||||
Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m))
|
Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m))
|
||||||
|
@ -392,7 +453,7 @@ module _ (f : B → B → B) where
|
||||||
... | yes k∈ke₁ | yes k∈ke₂ =
|
... | yes k∈ke₁ | yes k∈ke₂ =
|
||||||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||||||
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||||||
in (f v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂))
|
in (fUnion v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ ⟦ e₁ ⟧) (proj₂ ⟦ e₂ ⟧) k,v₁∈e₁ k,v₂∈e₂))
|
||||||
... | yes k∈ke₁ | no k∉ke₂ =
|
... | yes k∈ke₁ | no k∉ke₂ =
|
||||||
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
|
||||||
in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂))
|
in (v₁ , (in₁ g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ ⟦ e₁ ⟧) k,v₁∈e₁ k∉ke₂))
|
||||||
|
@ -400,6 +461,12 @@ module _ (f : B → B → B) where
|
||||||
let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
|
||||||
in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂))
|
in (v₂ , (in₂ k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂))
|
||||||
... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂)
|
... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂)
|
||||||
|
Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
||||||
|
with ∈k-dec k (proj₁ ⟦ e₁ ⟧) | ∈k-dec k (proj₁ ⟦ e₂ ⟧)
|
||||||
|
... | yes k∈ke₁ | yes k∈ke₂ = {!!}
|
||||||
|
... | yes k∈ke₁ | no k∉ke₂ = {!!}
|
||||||
|
... | no k∉ke₁ | yes k∈ke₂ = {!!}
|
||||||
|
... | no k∉ke₁ | no k∉ke₂ = {!!}
|
||||||
|
|
||||||
|
|
||||||
module _ (_≈_ : B → B → Set b) where
|
module _ (_≈_ : B → B → Set b) where
|
||||||
|
@ -416,13 +483,18 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
(f : B → B → B) where
|
(f : B → B → B) where
|
||||||
module I = ImplInsert f
|
module I = ImplInsert f
|
||||||
|
|
||||||
|
-- The Provenance type requires both union and intersection functions,
|
||||||
|
-- but here we're working with union only. Just use the union function
|
||||||
|
-- for both -- it doesn't matter, since we don't use intersection in
|
||||||
|
-- these proofs.
|
||||||
|
|
||||||
module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where
|
module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where
|
||||||
union-idemp : ∀ (m : Map) → lift (union f m m) m
|
union-idemp : ∀ (m : Map) → lift (union f m m) m
|
||||||
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
|
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
|
||||||
where
|
where
|
||||||
mm-m-subset : subset (union f m m) m
|
mm-m-subset : subset (union f m m) m
|
||||||
mm-m-subset k v k,v∈mm
|
mm-m-subset k v k,v∈mm
|
||||||
with Expr-Provenance f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm)
|
with Expr-Provenance f f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm)
|
||||||
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
|
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
|
||||||
rewrite Map-functional {m = m} v'∈m v''∈m
|
rewrite Map-functional {m = m} v'∈m v''∈m
|
||||||
rewrite Map-functional {m = union f m m} k,v∈mm v'v''∈mm =
|
rewrite Map-functional {m = union f m m} k,v∈mm v'v''∈mm =
|
||||||
|
@ -439,7 +511,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
where
|
where
|
||||||
union-comm-subset : ∀ (m₁ m₂ : Map) → subset (union f m₁ m₂) (union f m₂ m₁)
|
union-comm-subset : ∀ (m₁ m₂ : Map) → subset (union f m₁ m₂) (union f m₂ m₁)
|
||||||
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
||||||
with Expr-Provenance f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
|
with Expr-Provenance f f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
|
||||||
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
|
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
|
||||||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ =
|
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ =
|
||||||
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
||||||
|
@ -456,7 +528,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
where
|
where
|
||||||
union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
||||||
union-assoc₁ k v k,v∈m₁₂m₃
|
union-assoc₁ k v k,v∈m₁₂m₃
|
||||||
with Expr-Provenance f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
|
with Expr-Provenance f f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
|
||||||
... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
|
... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
|
||||||
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
||||||
|
@ -482,7 +554,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
|
|
||||||
union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
|
union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
|
||||||
union-assoc₂ k v k,v∈m₁m₂₃
|
union-assoc₂ k v k,v∈m₁m₂₃
|
||||||
with Expr-Provenance f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
|
with Expr-Provenance f f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
|
||||||
... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
|
... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
|
||||||
(v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
(v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user