Add more properties about lattices

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2026-02-16 17:41:26 -08:00
parent 9072da4ab6
commit 1c37141234

View File

@@ -96,6 +96,12 @@ record IsSemilattice {a} (A : Set a)
(a₁ a) (a₂ a) (a₁ a) (a₂ a)
-- need to show: a₁ ⊔ (a₁ ⊔ a₂) ≈ a₁ ⊔ a₂
-- (a₁ ⊔ a₁) ⊔ a₂ ≈ a₁ ⊔ (a₁ ⊔ a₂)
x≼x⊔y : (a₁ a₂ : A) a₁ (a₁ a₂)
x≼x⊔y a₁ a₂ = ≈-sym (≈-trans (≈-⊔-cong (≈-sym (⊔-idemp a₁)) (≈-refl {a₂})) (⊔-assoc a₁ a₁ a₂))
≼-refl : (a : A) a a ≼-refl : (a : A) a a
≼-refl a = ⊔-idemp a ≼-refl a = ⊔-idemp a
@@ -113,6 +119,18 @@ record IsSemilattice {a} (A : Set a)
a₃ a₃
≼-antisym : {a₁ a₂ : A} a₁ a₂ a₂ a₁ a₁ a₂
≼-antisym {a₁} {a₂} a₁⊔a₂≈a₂ a₂⊔a₁≈a₁ =
begin
a₁
∼⟨ ≈-sym a₂⊔a₁≈a₁
a₂ a₁
∼⟨ ⊔-comm _ _
a₁ a₂
∼⟨ a₁⊔a₂≈a₂
a₂
≼-cong : {a₁ a₂ a₃ a₄ : A} a₁ a₂ a₃ a₄ a₁ a₃ a₂ a₄ ≼-cong : {a₁ a₂ a₃ a₄ : A} a₁ a₂ a₃ a₄ a₁ a₃ a₂ a₄
≼-cong {a₁} {a₂} {a₃} {a₄} a₁≈a₂ a₃≈a₄ a₁⊔a₃≈a₃ = ≼-cong {a₁} {a₂} {a₃} {a₄} a₁≈a₂ a₃≈a₄ a₁⊔a₃≈a₃ =
begin begin