Prove that a finite height lattice is bounded below
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
5cab39ca82
commit
266c3dd81e
43
Lattice.agda
43
Lattice.agda
|
@ -442,3 +442,46 @@ module IsFiniteHeightLatticeInstances where
|
||||||
(proj₂ (IsFiniteHeightLattice.fixedHeight lB) b₁b₂))
|
(proj₂ (IsFiniteHeightLattice.fixedHeight lB) b₁b₂))
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
module FixedHeightLatticeIsBounded {a} {A : Set a} {h : ℕ}
|
||||||
|
{_≈_ : A → A → Set a}
|
||||||
|
{_⊔_ : A → A → A} {_⊓_ : A → A → A}
|
||||||
|
(decA : IsDecidable _≈_)
|
||||||
|
(lA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_) where
|
||||||
|
|
||||||
|
open IsFiniteHeightLattice lA using (_≼_; _≺_; fixedHeight; ≈-equiv; ≈-refl; ≈-sym; ≈-trans; ≼-refl; ≼-cong; ≺-cong; ≈-⊔-cong; absorb-⊔-⊓; ⊔-comm; ⊓-comm)
|
||||||
|
open IsDecidable decA using () renaming (R-dec to ≈-dec)
|
||||||
|
open NatProps using (+-comm; m+1+n≰m)
|
||||||
|
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||||
|
|
||||||
|
A-BoundedBelow : Σ A (λ ⊥ᴬ → ∀ (a : A) → ⊥ᴬ ≼ a)
|
||||||
|
A-BoundedBelow = (⊥ᴬ , ⊥ᴬ≼)
|
||||||
|
where
|
||||||
|
⊥ᴬ : A
|
||||||
|
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
|
||||||
|
|
||||||
|
⊥ᴬ≼ : ∀ (a : A) → ⊥ᴬ ≼ a
|
||||||
|
⊥ᴬ≼ a
|
||||||
|
with ≈-dec a ⊥ᴬ
|
||||||
|
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
|
||||||
|
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ)
|
||||||
|
... | yes ⊥ᴬ≈a⊓⊥ᴬ = (a , ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ)))
|
||||||
|
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = absurd (m+1+n≰m h h+1≤h)
|
||||||
|
where
|
||||||
|
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ
|
||||||
|
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
|
||||||
|
|
||||||
|
x≺⊥ᴬ : (⊥ᴬ ⊓ a) ≺ ⊥ᴬ
|
||||||
|
x≺⊥ᴬ = ((⊥ᴬ , ≈-trans (⊔-comm _ _) (≈-trans (≈-refl {⊥ᴬ ⊔ (⊥ᴬ ⊓ a)}) (absorb-⊔-⊓ ⊥ᴬ a))) , ⊥ᴬ⊓a̷≈⊥ᴬ)
|
||||||
|
|
||||||
|
h+1≤h : h + 1 ≤ h
|
||||||
|
h+1≤h rewrite (+-comm h 1) = proj₂ fixedHeight (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight)))
|
||||||
|
|
||||||
|
module FixedPoint {a} {A : Set a}
|
||||||
|
(h : ℕ)
|
||||||
|
(_≈_ : A → A → Set a)
|
||||||
|
(_⊔_ : A → A → A) (_⊓_ : A → A → A)
|
||||||
|
(isFiniteHeightLattice : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
|
||||||
|
(f : A → A) (Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ isFiniteHeightLattice)
|
||||||
|
(IsFiniteHeightLattice._≼_ isFiniteHeightLattice) f) where
|
||||||
|
open IsFiniteHeightLattice isFiniteHeightLattice
|
||||||
|
|
Loading…
Reference in New Issue
Block a user