Add decidability proofs for properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -16,12 +16,16 @@ open import Function.Definitions using (Injective)
|
||||
open import Relation.Binary using (Antisymmetric) renaming (Decidable to Decidable²)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
|
||||
open import Relation.Nullary using (¬_; yes; no; Dec)
|
||||
open import Relation.Nullary.Decidable using (¬?)
|
||||
open import Relation.Unary using (Decidable)
|
||||
|
||||
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
||||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
||||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
||||
|
||||
Decidable-¬ : ∀ {p c} {C : Set c} {P : C → Set p} → Decidable P → Decidable (λ x → ¬ P x)
|
||||
Decidable-¬ Decidable-P x = ¬? (Decidable-P x)
|
||||
|
||||
data Unique {c} {C : Set c} : List C → Set c where
|
||||
empty : Unique []
|
||||
push : ∀ {x : C} {xs : List C}
|
||||
|
||||
Reference in New Issue
Block a user