Move predecessor code into Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
a081edb881
commit
41ada43047
@ -86,6 +86,4 @@ record Program : Set where
|
|||||||
|
|
||||||
edge⇒incoming : ∀ {s₁ s₂ : State} → (s₁ , s₂) ListMem.∈ (Graph.edges graph) →
|
edge⇒incoming : ∀ {s₁ s₂ : State} → (s₁ , s₂) ListMem.∈ (Graph.edges graph) →
|
||||||
s₁ ListMem.∈ (incoming s₂)
|
s₁ ListMem.∈ (incoming s₂)
|
||||||
edge⇒incoming {s₁} {s₂} s₁,s₂∈es =
|
edge⇒incoming = edge⇒predecessor graph
|
||||||
∈-filter⁺ (λ s' → (s' , s₂) ∈? (Graph.edges graph))
|
|
||||||
(states-complete s₁) s₁,s₂∈es
|
|
||||||
|
@ -6,7 +6,7 @@ open import Data.Fin as Fin using (Fin; suc; zero)
|
|||||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||||
open import Data.List as List using (List; []; _∷_)
|
open import Data.List as List using (List; []; _∷_)
|
||||||
open import Data.List.Membership.Propositional as ListMem using ()
|
open import Data.List.Membership.Propositional as ListMem using ()
|
||||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺)
|
||||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||||
open import Data.Nat as Nat using (ℕ; suc)
|
open import Data.Nat as Nat using (ℕ; suc)
|
||||||
@ -161,3 +161,9 @@ module _ (g : Graph) where
|
|||||||
|
|
||||||
predecessors : (Graph.Index g) → List (Graph.Index g)
|
predecessors : (Graph.Index g) → List (Graph.Index g)
|
||||||
predecessors idx = List.filter (λ idx' → (idx' , idx) ∈? (Graph.edges g)) indices
|
predecessors idx = List.filter (λ idx' → (idx' , idx) ∈? (Graph.edges g)) indices
|
||||||
|
|
||||||
|
edge⇒predecessor : ∀ {idx₁ idx₂ : Graph.Index g} → (idx₁ , idx₂) ListMem.∈ (Graph.edges g) →
|
||||||
|
idx₁ ListMem.∈ (predecessors idx₂)
|
||||||
|
edge⇒predecessor {idx₁} {idx₂} idx₁,idx₂∈es =
|
||||||
|
∈-filter⁺ (λ idx' → (idx' , idx₂) ∈? (Graph.edges g))
|
||||||
|
(indices-complete idx₁) idx₁,idx₂∈es
|
||||||
|
Loading…
Reference in New Issue
Block a user