Prove one of the absorption laws
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
7e099a2561
commit
45606679f5
@ -148,6 +148,10 @@ record IsPartialSemilattice {a} {A : Set a}
|
||||
with a₁ ⊔? x | refl⇒a₁⊔?x=nothing refl | x-absorbʳ a₁
|
||||
... | nothing | refl | ()
|
||||
|
||||
|
||||
PartialAbsorb : ∀ {a} {A : Set a} (_≈_ : A → A → Set a) (_⊗₁_ : A → A → Maybe A) (_⊗₂_ : A → A → Maybe A) → Set a
|
||||
PartialAbsorb {a} {A} _≈_ _⊗₁_ _⊗₂_ = ∀ (x y : A) → maybe (λ x⊗₂y → lift-≈ _≈_ (x ⊗₁ x⊗₂y) (just x)) (Trivial _) (x ⊗₂ y)
|
||||
|
||||
record IsPartialLattice {a} {A : Set a}
|
||||
(_≈_ : A → A → Set a)
|
||||
(_⊔?_ : A → A → Maybe A)
|
||||
@ -157,8 +161,8 @@ record IsPartialLattice {a} {A : Set a}
|
||||
{{partialJoinSemilattice}} : IsPartialSemilattice _≈_ _⊔?_
|
||||
{{partialMeetSemilattice}} : IsPartialSemilattice _≈_ _⊓?_
|
||||
|
||||
absorb-⊔-⊓ : (x y : A) → maybe (λ x⊓y → lift-≈ _≈_ (x ⊔? x⊓y) (just x)) (Trivial _) (x ⊓? y)
|
||||
absorb-⊓-⊔ : (x y : A) → maybe (λ x⊔y → lift-≈ _≈_ (x ⊓? x⊔y) (just x)) (Trivial _) (x ⊔? y)
|
||||
absorb-⊔-⊓ : PartialAbsorb _≈_ _⊔?_ _⊓?_
|
||||
absorb-⊓-⊔ : PartialAbsorb _≈_ _⊓?_ _⊔?_
|
||||
|
||||
open IsPartialSemilattice partialJoinSemilattice
|
||||
renaming (HasAbsorbingElement to HasGreatestElement)
|
||||
@ -609,6 +613,32 @@ lvMeet-comm = lvCombine-comm PartialLatticeType._⊓?_ PartialLatticeType.⊓-co
|
||||
lvMeet-idemp : ∀ {a} (L : List (PartialLatticeType a)) → PartialIdemp (eqL L) (lvMeet L)
|
||||
lvMeet-idemp = lvCombine-idemp PartialLatticeType._⊓?_ PartialLatticeType.⊓-idemp
|
||||
|
||||
lvCombine-absorb : ∀ {a} (f₁ f₂ : CombineForPLT a) →
|
||||
(∀ plt → PartialAbsorb (PartialLatticeType._≈_ plt) (f₁ plt) (f₂ plt)) →
|
||||
∀ (L : List (PartialLatticeType a)) →
|
||||
PartialAbsorb (eqL L) (lvCombine f₁ L) (lvCombine f₂ L)
|
||||
lvCombine-absorb f₁ f₂ absorb-f₁-f₂ [] ()
|
||||
lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₁ v₁) (inj₁ v₂)
|
||||
with f₂ plt v₁ v₂ | absorb-f₁-f₂ plt v₁ v₂
|
||||
... | nothing | _ = mkTrivial
|
||||
... | just v₁⊗₂v₂ | v₁⊗₁v₁v₂≈?v₁
|
||||
with f₁ plt v₁ v₁⊗₂v₂ | v₁⊗₁v₁v₂≈?v₁
|
||||
... | just _ | ≈-just v₁⊗₁v₁v₂≈v₁ = ≈-just v₁⊗₁v₁v₂≈v₁
|
||||
lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₂ lv₁) (inj₁ v₂) = mkTrivial
|
||||
lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₁ v₁) (inj₂ lv₂) = mkTrivial
|
||||
lvCombine-absorb f₁ f₂ absorb-f₁-f₂ (plt ∷ plts) (inj₂ lv₁) (inj₂ lv₂)
|
||||
with lvCombine f₂ plts lv₁ lv₂ | lvCombine-absorb f₁ f₂ absorb-f₁-f₂ plts lv₁ lv₂
|
||||
... | nothing | _ = mkTrivial
|
||||
... | just lv₁⊗₂lv₂ | lv₁⊗₁lv₁lv₂≈?lv₁
|
||||
with lvCombine f₁ plts lv₁ lv₁⊗₂lv₂ | lv₁⊗₁lv₁lv₂≈?lv₁
|
||||
... | just _ | ≈-just lv₁⊗₁lv₁lv₂≈lv₁ = ≈-just lv₁⊗₁lv₁lv₂≈lv₁
|
||||
|
||||
absorb-lvJoin-lvMeet : ∀ {a} (L : List (PartialLatticeType a)) → PartialAbsorb (eqL L) (lvJoin L) (lvMeet L)
|
||||
absorb-lvJoin-lvMeet = lvCombine-absorb PartialLatticeType._⊔?_ PartialLatticeType._⊓?_ PartialLatticeType.absorb-⊔-⊓
|
||||
|
||||
absorb-lvMeet-lvJoin : ∀ {a} (L : List (PartialLatticeType a)) → PartialAbsorb (eqL L) (lvMeet L) (lvJoin L)
|
||||
absorb-lvMeet-lvJoin = lvCombine-absorb PartialLatticeType._⊓?_ PartialLatticeType._⊔?_ PartialLatticeType.absorb-⊓-⊔
|
||||
|
||||
lvJoin-greatest-total : ∀ {a} {L : Layer a} → (lv₁ lv₂ : LayerValue L) → LayerGreatest L → lvJoin (toList L) lv₁ lv₂ ≡ nothing → ⊥
|
||||
lvJoin-greatest-total {L = plt ∷⁺ []} (inj₁ v₁) (inj₁ v₂) (MkLayerGreatest {{hasGreatest = hasGreatest}}) v₁⊔v₂≡nothing
|
||||
with IsPartialLattice.HasGreatestElement.not-partial (PartialLatticeType.isPartialLattice plt) hasGreatest v₁ v₂
|
||||
@ -946,6 +976,41 @@ pathMeet'-idemp {Ls = add-via-greatest l ls} (inj₁ lv)
|
||||
... | just lv⊔lv | ≈-just lv⊔lv≈lv = ≈-just lv⊔lv≈lv
|
||||
pathMeet'-idemp {Ls = add-via-greatest l ls} (inj₂ p) = lift-≈-map inj₂ _ _ (λ _ _ x → x) _ _ (pathMeet'-idemp {Ls = ls} p)
|
||||
|
||||
absorb-pathJoin'-pathMeet' : ∀ {a} {Ls : Layers a} → PartialAbsorb (eqPath' Ls) (pathJoin' Ls) (pathMeet' Ls)
|
||||
absorb-pathJoin'-pathMeet' {Ls = single l} lv₁ lv₂ = absorb-lvJoin-lvMeet (toList l) lv₁ lv₂
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-least l ls} (inj₁ lv₁) (inj₁ lv₂)
|
||||
with lvMeet (toList l) lv₁ lv₂ | absorb-lvJoin-lvMeet (toList l) lv₁ lv₂
|
||||
... | nothing | _ = mkTrivial
|
||||
... | just lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁
|
||||
with lvJoin (toList l) lv₁ lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁
|
||||
... | just _ | ≈-just lv₁⊔lv₁lv₂≈lv₁ = ≈-just lv₁⊔lv₁lv₂≈lv₁
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-least l {{least}} ls} (inj₂ p₁) (inj₁ lv₂)
|
||||
= pathJoin'-idemp {Ls = add-via-least l {{least}} ls} (inj₂ p₁)
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-least l ls} (inj₁ lv₁) (inj₂ p₂)
|
||||
= ≈-just (eqLv-refl l lv₁)
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-least l@(plt ∷⁺ []) {{MkLayerLeast {{hasLeast = hasLeast}}}} ls} (inj₂ p₁) (inj₂ p₂)
|
||||
with pathMeet' ls p₁ p₂ | absorb-pathJoin'-pathMeet' {Ls = ls} p₁ p₂
|
||||
... | nothing | _ = mkTrivial
|
||||
... | just p₁⊓p₂ | p₁⊔p₁p₂≈?p₁
|
||||
with pathJoin' ls p₁ p₁⊓p₂ | p₁⊔p₁p₂≈?p₁
|
||||
... | just _ | ≈-just p₁⊔p₁p₂≈p₁ = ≈-just p₁⊔p₁p₂≈p₁
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls {{greatest}}} (inj₁ lv₁) (inj₁ lv₂)
|
||||
with lvMeet (toList l) lv₁ lv₂ | absorb-lvJoin-lvMeet (toList l) lv₁ lv₂
|
||||
... | nothing | _ = ≈-just (eqLv-refl l lv₁)
|
||||
... | just lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁
|
||||
with lvJoin (toList l) lv₁ lv₁⊓lv₂ | lv₁⊔lv₁lv₂≈?lv₁
|
||||
... | just _ | ≈-just lv₁⊔lv₁lv₂≈lv₁ = ≈-just lv₁⊔lv₁lv₂≈lv₁
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls {{greatest}} } (inj₂ p₁) (inj₁ lv₂)
|
||||
= pathJoin'-idemp {Ls = add-via-greatest l ls {{greatest}}} (inj₂ p₁)
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls} (inj₁ lv₁) (inj₂ p₂)
|
||||
= ≈-just (eqLv-refl l lv₁)
|
||||
absorb-pathJoin'-pathMeet' {Ls = add-via-greatest l ls} (inj₂ p₁) (inj₂ p₂)
|
||||
with pathMeet' ls p₁ p₂ | absorb-pathJoin'-pathMeet' {Ls = ls} p₁ p₂
|
||||
... | nothing | _ = mkTrivial
|
||||
... | just p₁⊓p₂ | p₁⊔p₁p₂≈?p₁
|
||||
with pathJoin' ls p₁ p₁⊓p₂ | p₁⊔p₁p₂≈?p₁
|
||||
... | just _ | ≈-just p₁⊔p₁p₂≈p₁ = ≈-just p₁⊔p₁p₂≈p₁
|
||||
|
||||
record _≈_ {a} {Ls : Layers a} (p₁ p₂ : Path Ls) : Set a where
|
||||
constructor mk-≈
|
||||
field pathEq : eqPath' Ls (Path.path p₁) (Path.path p₂)
|
||||
|
Loading…
Reference in New Issue
Block a user