Clean up imports a bit
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
13
Lattice.agda
13
Lattice.agda
@@ -3,20 +3,13 @@ module Lattice where
|
||||
open import Equivalence
|
||||
import Chain
|
||||
|
||||
import Data.Nat.Properties as NatProps
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst)
|
||||
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
|
||||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
open import Data.Nat as Nat using (ℕ; _≤_; _+_; suc)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Relation.Nullary using (Dec; ¬_)
|
||||
open import Data.Nat as Nat using (ℕ)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Function.Definitions using (Injective)
|
||||
open import Data.Empty using (⊥)
|
||||
|
||||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||
absurd ()
|
||||
|
||||
IsDecidable : ∀ {a} {A : Set a} (R : A → A → Set a) → Set a
|
||||
IsDecidable {a} {A} R = ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||
|
||||
Reference in New Issue
Block a user