Clean up imports a bit
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
6cd37a212f
commit
4a90a57388
13
Lattice.agda
13
Lattice.agda
|
@ -3,20 +3,13 @@ module Lattice where
|
|||
open import Equivalence
|
||||
import Chain
|
||||
|
||||
import Data.Nat.Properties as NatProps
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst)
|
||||
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
|
||||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
open import Data.Nat as Nat using (ℕ; _≤_; _+_; suc)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Relation.Nullary using (Dec; ¬_)
|
||||
open import Data.Nat as Nat using (ℕ)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Function.Definitions using (Injective)
|
||||
open import Data.Empty using (⊥)
|
||||
|
||||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||
absurd ()
|
||||
|
||||
IsDecidable : ∀ {a} {A : Set a} (R : A → A → Set a) → Set a
|
||||
IsDecidable {a} {A} R = ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||
|
|
|
@ -8,11 +8,11 @@ module Lattice.Prod {a} {A B : Set a}
|
|||
|
||||
open import Data.Nat using (ℕ; _≤_; _+_; suc)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Equivalence
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||
open import Relation.Binary.Definitions
|
||||
open import Relation.Binary.PropositionalEquality using (sym; subst)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
open import Equivalence
|
||||
import Chain
|
||||
|
||||
open IsLattice lA using () renaming
|
||||
|
@ -141,7 +141,7 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
|||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||
unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} (((d₁ , d₂) , (a₁⊔d₁≈a , b₁⊔d₂≈b)) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂)
|
||||
with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂
|
||||
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = absurd (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||||
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||||
... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((suc n₁ , n₂) , ((step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂)))
|
||||
... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
|
|
Loading…
Reference in New Issue
Block a user