Migrate Maps to including a uniqueness proof
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
13
Lattice.agda
13
Lattice.agda
@@ -101,19 +101,22 @@ module IsEquivalenceInstances where
|
||||
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
|
||||
|
||||
≈-refl : {m : Map} → m ≈ m
|
||||
≈-refl {m} = (⊆-refl , ⊆-refl)
|
||||
≈-refl {m} = (⊆-refl {m}, ⊆-refl {m})
|
||||
|
||||
≈-sym : {m₁ m₂ : Map} → m₁ ≈ m₂ → m₂ ≈ m₁
|
||||
≈-sym (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂)
|
||||
|
||||
≈-trans : {m₁ m₂ m₃ : Map} → m₁ ≈ m₂ → m₂ ≈ m₃ → m₁ ≈ m₃
|
||||
≈-trans (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) = (⊆-trans m₁⊆m₂ m₂⊆m₃ , ⊆-trans m₃⊆m₂ m₂⊆m₁)
|
||||
≈-trans {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) =
|
||||
( ⊆-trans {m₁} {m₂} {m₃} m₁⊆m₂ m₂⊆m₃
|
||||
, ⊆-trans {m₃} {m₂} {m₁} m₃⊆m₂ m₂⊆m₁
|
||||
)
|
||||
|
||||
LiftEquivalence : IsEquivalence Map _≈_
|
||||
LiftEquivalence = record
|
||||
{ ≈-refl = ≈-refl
|
||||
; ≈-sym = ≈-sym
|
||||
; ≈-trans = ≈-trans
|
||||
{ ≈-refl = λ {m₁} → ≈-refl {m₁}
|
||||
; ≈-sym = λ {m₁} {m₂} → ≈-sym {m₁} {m₂}
|
||||
; ≈-trans = λ {m₁} {m₂} {m₃} → ≈-trans {m₁} {m₂} {m₃}
|
||||
}
|
||||
|
||||
module IsSemilatticeInstances where
|
||||
|
||||
Reference in New Issue
Block a user